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ABSTRACT

Bangladeshi Sign Language (BdSL) is a commonly used medium of communication

for the hearing-impaired people in Bangladesh. Sign Language Recognition (SLR) aims

at the computer-based model, translating the Sign Language (SL) into speech or text,

so as to facilitate the communication between hearing-impaired people and the normal

people. This problem has a broad social impact and an interesting avenue of research.

However, it is a challenging task due to the variation of different people (age, gender,

etc) and the complexity in sign words. Sign word recognition gets more difficult due

to variation in action. Developing a real-time system to detect these signs from images

or videos is a great challenge. Such type of work is rare, especially no work on sign

word recognition has been done so far in Bangladesh. Also developing a system that

works for both letters and words is both unique and challenging. In our thesis, we

present different methodologies to detect BdSL letters and words from real-time videos

as sign letters do not consist of any sequence of actions whereas sign words consist of

different actions. One of our methods uses a Convolutional Neural Network based object

detection technique to detect the presence of signs in the image region and recognize

its class. For this purpose, we adopted Faster Region-based Convolutional Network

model in our system. On the other hand, for the sign word recognition, Recurrent

Neural Network(RNN) based model has been applied. The videos are converted to

multiple frames and then the sequence of images are processed to recognize the class.

Both of the methods are implemented on our own generated dataset. There are no

such datasets available on BdSL and the sign languages are significantly different in

different countries and even regions. So, we had to develop datasets – BdSLImset &

BdSLVidset– by ourselves to train our systems and we have given open access to our

datasets for future research. Using deep learning we have got results with high accuracy.

To demonstrate the application, we have developed a Graphical User Interface (GUI)

for our system which can detect the letters and words respectively in real-time, and give

satisfactory output.
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Chapter 1

Introduction

Sign language is a non-verbal form of communication used especially by people with the in-

ability to speak or hear. They use it to express their thoughts and emotions. But non-signers

find it difficult to understand them. We tried to understand the sign language communica-

tion, investigated how they actually communicate and made an approach, so that we could

create a bridge between the signers and non-signers.

1.1 Overview

The people who cannot speak, communicate through sign language. This form of commu-

nication involves varieties of hand movements and gestures as well. As Bangladeshi Sign

Language (BdSL) is structurally different from sign languages of other countries, there is

huge work to be done to make this way of communication easier. Communication is an es-

sential part of everyday life and it is particularly important for deaf people to communicate

as normally as possible with others. However, there is a lack of qualified Sign Language (SL)

interpreters (SLI) in Bangladesh and high demand for these type of services. This problem

is further aggravated by the small number of general people who understand this form of

communication, making Sign Language (SL) communication more difficult. So there is a

need to solve this matter as the people who can not speak already face major difficulties in

communication.

There is a specific sign for each Bengali letters (see Figure 1.1). We tried to work with

each of these letters. BdSL letters are difficult and consist of different gestures. They use

the characters to spell anything letter by letter or say their names. Some of the letters also

have similar gestures and it is very hard to differentiate these letters for a computer vision

system.

The people who can not speak, sometimes use characters for their communication. But
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they do not use it often. They tend to use an action to describe a specific word or phrase.

Characters do not consist of any motion whereas words have a sequence of motions in the

gesture.

Figure 1.1: A set of Bengali Sign Letters, collected from the book taught in Bodhir School
(A school for the hearing impaired people located at Purana Paltan, Dhaka)

1.2 Research Domain

Our main objective is Bangladeshi Sign Language to be perceived and understood by every-

one via a digital medium, i.e, from videos or images. First of all, we focused on letter based

recognition of sign language which allows the system to track down a single letter which

eventually falls under the domain of object detection. Letters are necessary for forming up

a single word but mostly each word has its own gesture. But words consist of action, that

extends our research domain towards action recognition from temporal data, unlike letters.
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Therefore, we came up with a different solution for recognizing sign words in real-time. We

briefly describe these two research sub-domain for our thesis in the following sections.

1.2.1 Object Detection and Localization

Object detection and localization is a system related to computer vision and image process-

ing and deals with detecting objects of a certain class from an image and localize where it is

present in the image. Every object class has its own special features that help in classifying

the class. And by sub-dividing an image into different regions, the system can search if the

object is present in that region. For example, we are looking for, what type of objects are

present in a picture and where they are in the image. Such an example of multiple object

detection is given in Figure 1.2.

Figure 1.2: Example of Object Detection [1]

As sign letters have no sequence of motion or action, recognition of sign letters is similar to

object detection and localization methods. Each sign letter can be considered as an individ-

ual object. Most of the time object (letter) recognition problem consists of three tasks to be

done in real time:

1. Obtaining a video of the user signing a letter- Input.

2. Identifying if there is any letter in the video frame- Classification.

3. Reconstructing and displaying a bounding box on the gesture with the most likely

letter from classification scores- Output.

From a computer vision perspective, this problem represents a significant challenge due to

a number of considerations, including:

1. Environmental concerns (e.g. lighting sensitivity, background, and camera position).
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2. Occlusion (e.g. some or all fingers, or an entire hand can be out of the field of view).

3. Sign boundary detection (when a sign ends and the next begins).

4. Co-articulation (when a sign is affected by the preceding or succeeding sign).

To overcome the barriers, the simplest deep learning approach, and a widely used one,

for detecting objects in images is- Neural Network (Figure 1.3) and Convolutional Neural

Networks (CNN) (Figure 1.4).

Figure 1.3: Basic Neural Network Model. Image values are flattened in a 1D vector and
goes through some hidden layers with some initial weights. Weights are updated during
training through forward and backward pass and the system learns to classify objects from
images.

There are some improvised region based CNN (R-CNN) methods that are helpful in the

localization of objects in an image. Faster R-CNN, one such model proposes a bunch of

boxes in the image and checks if any of these boxes contain any object. This R-CNN model

uses selective search to extract these boxes from an image (these boxes are called regions),

shown in Figure 1.5.

Another R-CNN based models such as, You Only Look Once (YOLO) which makes predictions

with a single network evaluation unlike systems like other R-CNNs which require more

regional computation for a single image, shown in Figure 1.6. This makes it extremely fast,

more than 1000x faster than R-CNN and 100x faster than Fast R-CNN.
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Figure 1.4: Basic CNN Model. Before flattening the image values, these values go through
some convolutional layers and then fed into a neural network to train.

1.2.2 Action Recognition

Activity recognition aims to recognize the actions and predicts one or more item from a

series of observations on the item’s actions and the environmental conditions. As mentioned

earlier, sign words contain a sequence of actions. This problem falls under the domain of

action recognition in deep learning.

Unlike object detection, the system has to combine the sequence of images/frames to iden-

tify a class. Recurrent Neural Network (RNN) is a very popular sequence model, which

combines a sequence of inputs and trains the system. As each frame is dependent on the

frames, by sharing the parameters among each other RNN can learn these sequences. Long

Short Term Memory (LSTM) is an RNN based model that keeps track of even very earlier

frames outputs. There can be different types of RNN models, such as one to one, one to

many, many to many, many to one. Sign word recognition falls under many to one RNN

model. As many frames go as input and output is one class prediction (see Figure 1.7).

1.2.3 Challenges

Making such a system was not smooth. We faced many challenges. To solve these problems,

the first thing we needed was a good understanding of how Bangladeshi Sign Language

works. We have learned the signs, researching the signs from several sources. Based on that

we had to make our own dataset as there was no suitable dataset available to work with.

Another problem we faced was that very few works have been done using deep learning in
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Figure 1.5: R-CNN Masking [2]

Figure 1.6: YOLO detection [3]

this sector. So it was quite challenging for us to work in this field.

1.3 Contribution

In our work, we explored the area of sign language detection and developed techniques to

detect signs in real time by exploiting the Faster Region-based Convolutional Neural Network

method (faster R-CNN) [9] and Long Short Term Memory(LSTM) model. Different sign

languages are used worldwide, such as – American Sign Language (ASL), Argentinian Sign

Language (LSA), Chinese Sign Language (CSL), Parisian Sign Language, etc. ASL recogni-

tion has been explored since around 1995 [10] and other languages are also investigated by

different researchers ( [11] [12]). However, very few works have been done on Bangladeshi

Sign Languages (BdSL). Most of the previous works do not take advantage of CNN based

object detection techniques to identify the gestures. In our thesis, we will investigate BdSL

recognition and develop a system to help bridge the gap between signers and non-signers.

Our work is mainly divided into two types. One is character based and the other one is word
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Figure 1.7: An one to many RNN model [4]. For video activity recognition, input(x1,x2,..)
is video frames and output ‘y’ is the identification of the activity.

(action) based.

Developed countries have some work done in both of the fields but most of them require

electric gloves or wires or sensors. On the contrary, we only need simple red colored gloves

in our word recognition system and the sign letter based system is device independent. No

real-time sign word analysis system using deep learning has been developed yet for BdSL

and also most of the letter recognition systems are based on conventional machine learn-

ing methods. Apart from all the methods and architectures used, our main intention was

reducing the communication gap between hearing impaired people and others. Our work

was started with the detection of single letter recognition of Bangla Sign Language and we

were successful in detecting the single letter from the real-time video and then we moved

to word recognition. An overview of our contribution throughout our research is described

next.

1.3.1 Sign Letter Recognition

As mentioned earlier, working on BdSL letter recognition in real time, a robust dataset is

needed for deep learning methods. But there was no such dataset available. Some of our

contributions in this research field are given below:

• We researched on BdSL sign language and other sign languages from several sources

and visited ‘Dhaka Badhir School’ ( located at Purana Paltan, Dhaka) where we verified

our dataset and got consent for our research in this domain.

• We built a robust dataset and made it an open source for further research. Our dataset
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(a) Showing sign ‘( )’. (b) Showing sign ‘( )’.

Figure 1.8: Examples of BdSLImset dataset

BdSLImset specifics are described in Chapter 3. Two examples are given in Figure

2.14. The dataset is available here: https://github.com/annonymous3003/

BdSLImset

• We implemented faster R-CNN model based deep learning approach in sign letter

recognition.

• We built a real-time system of sign letter recognition with no background restriction.

We have demonstrated the experimental outcomes of our proposed methodology.

1.3.2 Sign word Recognition

Only sign letters are not enough for communication. Real life application, however, does

not work the way we perceived. BdSL is not just letters. Signers talk in gestures, that is,

they make a series of hand movements to converse. For the testing purpose of our model,

we went to "Dhaka Badhir High School" located at Purana Paltan, Dhaka. From there we

got to know that it will be actually helpful to the signers if the system could be able to

convert sign words (motion based recognition) instead of a single letter and this pushed us

for improving our initial model and implementing the motion based Bangla Sign Language

Detection. Our contributions to action based recognition are given below:

• We built a video dataset called BdSLVidset and made it open source for further re-

search. Our dataset specifics are described in Chapter 3. A sample of our dataset

is shown in Figure 1.9. The dataset is available here: https://github.com/

Oishee30/BdSLVidSet.

• We implemented LSTM based deep learning approach in sign word recognition.

https://github.com/annonymous3003/BdSLImset
https://github.com/annonymous3003/BdSLImset
https://github.com/Oishee30/BdSLVidSet
https://github.com/Oishee30/BdSLVidSet
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(a) Showing a frame of sign ‘ami’. (b) Showing a frame of sign ‘valo’.

Figure 1.9: Example frames from our video dataset.

• We built a real-time system of sign word recognition but there are some background

and time limitations.

The initial research on real-time sign letter detection has been accepted in International

Conference on Innovation in Engineering and Technology (ICIET) 27-29 December 2018,

Dhaka, Bangladesh. Our paper, "Real Time Bangladeshi Sign Language Detection using

Faster R-CNN" is available in IEEE Xplore Digital Library [13].

1.4 Sign Language Recognition Approach

We present a brief overview of our methodology in this section. Our sign letter recognition

system - implemented using Faster R-CNN Inception V2 model - take frames as input from

real-time videos. It searches for sign gestures, sub-dividing the frames in different regions.

And if a sign gesture is found in the image, it displays a bounding box around it and pre-

dicts which sign is it. Another classifier, which classifies words is implemented using LSTM

network model. It takes sequences of video frames as input. Then pre-process the frames

and afterward each processed frame is fed into CNN for generating spatial feature values.

Finally, these spatial feature values of each frame are then fed into an LSTM network as

temporal features as input. This system then combines the features and predicts the word.

Previous research works in detecting BdSL generally depend on external devices and most

of the other vision-based techniques do not perform efficiently in real time. Our approach,

however, is free from such limitations and the proposed methods are best suited to identify

Bangladeshi signs in real time and recognize them successfully provided an enriched dataset

is used.



1.5. THESIS ORGANIZATION 10

1.5 Thesis Organization

The rest of the thesis advances as follows:

• Chapter 2 provides background and related works. Here we discuss the Deep Learning

methods we studied and the papers which used such methods for developing systems

that were helpful to us.

• The dataset preparation and processing is described fully chapter 3.

• In Chapter 4, how the CNN and RNN models extract information and predict output

is described in detail.

• Our results and comparisons between different models and approaches used are de-

scribed and explained in detail in chapter 5.

• The conclusion to our findings is given chapter 6 and further discusses all the possi-

bilities this research can lead to.

1.6 Summary

BdSL language is an essential method of communication for hearing impaired people. So

a system is needed for the effective communication between the normal people and the

people who use sign language. There are two basic ways that BdSL is generally composed

of, signs for letter recognition and gestures for word recognition. We have made dataset

for both these sets and made it available for all. Also we have have a system for both the

systems which recognizes letters and words rescpectively.
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Chapter 2

Literature Review

In order to build robust classifiers for object and action detection, CNN based model and

RNN based models are the two basic components of our systems. Each of the model archi-

tecture is reviewed below. Some similar existing systems to ours have also been reviewed

with constructive comparisons.

2.1 Background Studies

In this section, we reviewed the necessary background needed to understand our proposed

methodology for sign letters and word recognition systems. This consists of an architectural

explanation of Neural Networks, CNN model, transfer learning concepts, Faster R-CNN ar-

chitecture and LSTM model. We used Faster R-CNN in our research for letter recognition

and LSTM for the detection of words.

2.1.1 Neural Network

Neural networks, as its name suggests, is a machine learning technique that is modeled after

the brain structure [14]. It comprises of a network of learning units called neurons. These

neurons learn how to convert input signals (e.g. picture of a sign letter) into corresponding

output signals (e.g. the label ‘A’), forming the basis of automated recognition. These neurons

belong to the hidden layer. In a neural network that is trained with supervised learning, the

training set contains values of the inputs as well as the target outputs labels. So the term

hidden layer refers to the fact that in the training set, the true values for these nodes in the

middle are not observed. The inputs and outputs are known but the things in the hidden

layer are not seen in the training set (see Figure 2.1).
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Figure 2.1: Suppose, we have the input features: x1, x2, x3, x4, x5 stacked up vertically
from an image of sign letter. And this is called the input layer of the neural network. Then
there’s another layer of circles, called a hidden layer of the neural network. The final layer
here is just one node. And this single-node layer is called the output layer and is responsible
for generating the predicted value of the sign.

2.1.2 Convolutional Neural Network

One of the challenges of computer vision problems is that the inputs can get really big. For

example, a 64 by 64 image consists 64 by 64 by 3 which is 12288 inputs because there are

three color channels. And that’s not too bad. But 64 by 64 is actually a very small image.

Larger images may have 1000 pixel by 1000 pixel image, and that’s just one megapixel. But

the dimension of the input features will be 1000 by 1000 by 3, that’s three million. For

three million input features, the input layer will be three million dimensional. And so, if in

the first hidden layers have just 1000 hidden units, then the total number of weights will

be three billion parameters which are just very, very large. And with that many parameters,

it’s difficult to get enough data to prevent a neural network from over-fitting. And also, the

computational requirements and the memory requirements to train a neural network with

three billion parameters is just a bit unfeasible. To overcome this problem, convolution

operations are needed, which is one of the fundamental building blocks of convolutional

neural networks (see Figure 2.2). CNN consists of several of these Convolutional layers

each of which can have a similar or different numbers of independent filters. All these

filters are initialized randomly and become the model parameters that will be learned by

the network subsequently.

Inputs from the convolution layer can be ‘smoothed’ to reduce the sensitivity of the filters
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Figure 2.2: Example of the Convolution process in an image. A 7∗7 input image is convolved
with a 3∗3 convolutional filter. This filter basically a feature extractor, which reduces the
size of the image into a smaller one extracting the important features information.

to noise and variations. This smoothing process is called sub-sampling and can be achieved

by taking averages or taking the maximum over a sample of the signal. Examples of sub-

sampling methods (for image signals) include reducing the size of the image, or reducing

the color contrast across red, green and blue (RGB) channels (see Figure 2.3).

Figure 2.3: Examples of sub-sampling methods (for image signals) include reducing the size
of the image or reducing the color contrast across red, green and blue (RGB) channels.

CNN also consists of pool layers. The most common approach used in pooling is max pooling

in which the maximum of a region is taken as its representative (see Figure 2.4). The

last layers in the network are fully connected neural network with improvised input values

from convolutional layers, meaning that neurons of preceding layers are connected to every

neuron in subsequent layers. This mimics high-level reasoning where all possible pathways
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Figure 2.4: For example in the following diagram a 2x2 region is replaced by the maximum
value in it [5].

from the input to output are considered. An example of overall CNN architecture is given

in Figure 2.5.

Figure 2.5: A CNN model consisting of different types of convolutional and fully connected
layers.

Learning this different reasoning from images, the system requires feedback. This is done

using a validation set (set of data not seen by the model yet) where the CNN would make

predictions and compare them with the true labels or ground truth. The predictions in which

errors are made are then fed back to the CNN to refine the weights learned, in a so-called

backward pass. Formally, this algorithm is called back-propagation of errors, and it requires

functions in the CNN to be differentiable.

2.1.3 Transfer Learning

In deep learning, transfer learning has become a really important part. As deep learning

models are computationally expensive, these take a lot of time and processing power to
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start training from scratch. There are already a lot of pre-trained models, trained on huge

datasets. These models consist of a huge number of hidden layers and pre-trained weights

do not only work for the dataset they are trained on but also work as any type of feature

detector. Such a model Faster R-CNN Inception V2, trained on the COCO dataset has been

used in our system.

As mentioned earlier, sign letter recognition falls under the domain of image localization.

That is, locating the sign in the image along with classifying it. Faster R-CNN is a region-

based model that is best suited for this purpose. Now, a deeper elaboration of Faster R-CNN

will be explained in the section below.

2.1.4 Faster R-CNN Architecture

The architecture of Faster R-CNN has several moving parts. First of all, we will discuss

the high-level overview (shown in Figure 2.6) and then go over the details for each of the

components.

It all starts with an image, from which we want to obtain:

• A list of bounding boxes.

• A label assigned to each bounding box.

• A probability for each label and bounding box.

Figure 2.6: Complete Architecture of Faster R-CNN

The input images are represented as Height×Width×Depth tensors (multidimensional ar-

rays), which has been passed through a pre-trained CNN until an intermediate layer, ending

up with a convolutional feature map. We use this as a feature extractor for the next part.

Next, we have the Region Proposal Network (RPN). Using the features that the CNN com-

puted, it is used to find up to a predefined number of regions (bounding boxes), which may

contain objects.

The hardest issue with detecting an object is generating the variable-length list of bounding

boxes. Usually, the last block is a fixed sized tensor output. In image classification, the
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output is a (N,) shaped tensor, with N being the number of classes, where each scalar in

location i contains the probability of that image being labeli.

The variable-length problem is solved in the RPN by using anchors: fixed sized reference

bounding boxes which are placed uniformly throughout the original image. Instead of hav-

ing to detect where objects are, it divides the situation into two parts. For every anchor:

• Does this anchor contain a relevant object?

• How would it adjust this anchor to better fit the relevant object?

After having a list of possible relevant objects and their locations in the original image along

with the features extracted by the CNN and the bounding boxes with relevant objects, we

apply Region of Interest (RoI) Pooling and extract those features which would correspond

to the relevant objects into a new tensor.

Finally, comes the R-CNN module which uses the above information to:

• Classify the content in the bounding box.

• Adjust the bounding box coordinates (so it better fits the object).

2.1.4.1 Base Network

As we mentioned earlier, the first step is using a CNN pretrained for the task of classification

and using the output of an intermediate layer. Faster R-CNN used ZF and VGG pretrained on

ImageNet but since then there have been lots of different networks with a varying number

of weights. Here we talked about standard VGG-16 as an example.

Visual Geometry Group (VGG)

When using VGG for classification (Figure 2.7), the input is a 224×224×3 tensor (224×224

pixel RGB image). This has to remain fixed for classification because of the final block of

the network uses fully-connected layers (instead of convolutional), which require a fixed

length input.

Each convolutional layer creates abstractions based on previous information. The first layers

usually learn edges, the second finds patterns in edges in order to activate for more complex

shapes and so forth. Eventually, it ends up with a convolutional feature map (Figure 2.8)

which has spatial dimensions much smaller than the original image, but greater depth.

The width and height of the feature map decrease because of the pooling applied between

convolutional layers and the depth increases based on the number of filters the convolutional

layer learns. In its depth, the convolutional feature map has encoded all the information
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Figure 2.7: Visual Geometry Group classification process

Figure 2.8: Image to convolutional feature map extraction

for the image while maintaining the location of the ‘things’ it has encoded relative to the

original image. For example, if there was a red square on the top left of the image and the

convolutional layers activate for it, then the information for that red square would still be

on the top left of the convolutional feature map.

2.1.4.2 Anchors

Anchors are fixed bounding boxes that are placed throughout the image with different sizes

and ratios that are going to be used for reference when first predicting object locations

(Figure 2.9). Since we are working with a convolutional feature map of size Convwidth×
Convheight×Convdepth, we create a set of anchors for each of the points in Convwidth×Convheight.

Even though anchors are defined based on the convolutional feature map, the final anchors

refer to the original image.

The dimensions of the feature map will be proportional to those of the original image.

Mathematically, if the image was w×h, the feature map will end up w/r × h/r where r is
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Figure 2.9: Anchor positions throughout Original Image

called sub-sampling ratio (weighted sum of the local region). If we define one anchor per

spatial position of the feature map, the final image will end up with a bunch of anchors

separated by r pixels. In the case of VGG, r=16. In order to choose the set of anchors we

usually define a set of sizes and a set of ratios between the width and height of boxes and

use all the possible combinations of sizes and ratios.

2.1.4.3 Region Proposal Network

RPN takes all the reference boxes (anchors) and outputs a set of good proposals for objects

(Figure 2.10). It does this by having two different outputs for each of the anchors.

Figure 2.10: RPN uses feature map and generates proposal over image

The first one is the probability that an anchor is an object. RPN does not look for what

class of object it is, only that it does, in fact, look like an object (and not a background). In
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another way, we can say it looks for ‘objectness score’. This objectness score filters out the

bad predictions for the second stage.

The second output is the bounding box regression for adjusting the anchors to better fit

the object it is predicting. Using the final proposal coordinates and their ‘objectness score’ it

brings out a good set of proposals for objects.

2.1.4.4 Region of Interest Pooling

After the RPN step, we have a bunch of object proposals with no class assigned to them.

Next, we have to take these bounding box and classify them into desired categories. The

simplest approach would be to take each proposal, crop it, and then pass it through the

pre-trained base network. The main problem is that running the computations for a huge

number of proposals with different sizes.

Figure 2.11: Region Of Interest Pooling process

Region of Interest Pooling can simplify the problem by reducing the feature maps into the

same size. Unlike Max-Pooling which has a fixed size, RoI Pooling splits the input feature

map into a fixed number (Figure 2.11) of roughly equal regions, and then apply Max-Pooling

on every region. Therefore the output of RoI Pooling is always a fixed number regardless of

the size of the input. With the fixed RoI Pooling outputs as inputs, we have lots of choices

for the final architecture level (R-CNN).

2.1.4.5 Region-based Convolutional Neural Network

Region-based convolutional neural network (R-CNN) is the final step in Faster R-CNN’s

pipeline.

After getting a convolutional feature map from the image, using it to get object proposals

with the RPN and finally extracting features for each of those proposals (via RoI Pooling), we

finally need to use these features for classification. The R-CNN takes the feature map for each

proposal, flattens it and uses two fully-connected layers. Then, it uses two different fully-

connected layers (Figure 2.12). For each of the different objects R-CNN has two different

goals:
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Figure 2.12: R-CNN, shaping the final output

• Classify proposals into one of the classes, plus a background class (for removing bad

proposals).

• Better adjust the bounding box for the proposal according to the predicted class.

2.1.5 Long Short-Term Memory Architecture(LSTM)

LSTM is a recurrent neural network (RNN) architecture that can remember the values over

arbitrary intervals. Where there is a time series of unknown duration, LSTM is well-suited to

classify, process and predict. A chain of repeating modules of the neural network is followed

by all current recurrent neural networks. In standard RNNs, the repeating modules have a

structure with a single layer. LSTM also has a chain structure where the repeating module

has a different structure. Instead of having a single neural network layer, there are four.

Figure 2.13: LSTM Architecture [6]

The structure of the RNN and the hidden Markov model is very similar. The main difference

is calculating and constructing parameters. Insensitivity to gap length is an advantage of

LSTM. RNN and HMM rely on the hidden state before emission/sequence. If we want to

predict the sequence after 1,000 intervals instead of 10, these models forget the starting

point but LSTM remembers [4].
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2.1.5.1 Architecture which allows LSTM to Remember

RNN cell takes in two inputs, output from the last hidden state and the observation of

current time. Apart from the hidden state, there is no information about the past which is

remembered.

Figure 2.14: RNN Cell [7]

The long-term memory is also called by cell state. The looping arrows indicate the recursive

nature of the cell. It permits to store the previous info found from intervals. The cell state

is modified by the forget gate placed below the cell state and also adjusted by the input

modulation gate. With the use of the equation, the previous cell state forgets by multiple

with the forget gate and adds new information through the output of the input gates.

Figure 2.15: LSTM Cell [7]

Figure 2.16: Cell State [7]
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Figure 2.17: Forget Gate [7]

The remember vector is usually called the forget gate. The output of the forget gate tells

the cell state which information to forget by multiplying 0 to a position in the matrix. If

the output of the forget gate is 1, the information is kept in the cell state. In weighted

input/observation and previous hidden state, the sigmoid function is applied.

Figure 2.18: Input Gate [7]

The save vector works as an input gate, determines which information should enter the cell

state / long-term memory. An activation function is required for each gate. The input gate

is a sigmoid function and has a range of [0,1]. Because the equation of the cell state is a

summation between the previous cell state, sigmoid function alone will only add memory

and not be able to remove/forget the memory.

The number will never be zero / turned-off / forget if we can add a float number between

[0,1]. The input modulation gate has a tanh activation function with a range of [-1, 1]
which allows the cell state to forget the memory.

Figure 2.19: Output Gate [7]

Another name of the output gate is a focus vector. From all the possible values of the matrix,

which should be moving forward to the next hidden state and what information should be

passed to the next sequence.
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Figure 2.20: Hidden State [7]

Figure 2.21: LSTM Cell with activation [6]

The first sigmoid activation function is the forget gate. It identifies which information should

be forgotten from the previous cell state (Ct-1). The input gate includes a second sigmoid

and first tanh activation function. The remaining last sigmoid considered as an output gate

that highlights the information going to the next hidden state.

2.2 Related Works

In this section, we will discuss the works done on Bangladeshi Sign Language recognition so

far and the works that are related to our work. Discussed below is an overview of the papers,

that we have gone through, with their process, limitations, and challenges the authors faced

during their experiment. We have reviewed the papers in a separate section, one of them is

related to sign letter recognition and the other one is related to action based recognition.

2.2.1 Object Recognition

In this section, some papers related to object and sign letter recognition have been reviewed.
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2.2.1.1 Bangla Sign Language Recognition using Convolutional Neural Network (2017)

Topic:

This paper proposed a system that uses a learning-based approach to recognize BdSL. They

used Leap Motion Controller and CNN for their work [15].

Project Details:

The leap motion controller was used to track the continuous motion of the hands. It provides

a skeletal model of the hand with appropriate data of hand position, orientation, rotation,

fingertips, grabbing and more non-linear features. It preprocessed all the data by removing

garbage collection and creating virtual hands in virtual reality. A set of layer was used to

process the data obtained from the leap motion controller. Basically, Convolutional Neural

Network was used here to build a decision network. How it worked layer-wise is shown in

Figure 5.1. The features obtained from the leap motion controller are sent as a parameter

Figure 2.22: Layers on processing BdSL features. (Source: Original Paper)

to the next layer which is the convolutional layer. The finger features are considered as a

hyper-parameter. After the Convolutional layer, they passed the output to the pooling layer

which measured the comparison and the loss function and forwarded them to the fully

connected layer.

Limitations:

Though they have only a 3% error rate, the main problem is they used an external device

for their work. This reduces the user-friendliness of the system and the approach is not a

real-time approach.

2.2.1.2 A Real-Time Appearance-Based Bengali Alphabet And Numeral Signs Recog-

nition (2017)
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Topic:

This paper presented a system that recognizes the Bengali alphabet and numeral signs. They

used region of interest and K-nearest Neighbours (KNN) classifier for the work. [16]

Project Details:

They initialized Region of Interest (ROI) by detecting ‘Opened Hand’ followed by ‘Closed

Hand’ posture from captured images. The area was segmented based on the Hue and Sat-

uration values of human skin. Then they were converted to binary images followed by row

vectors.

Figure 2.23: Block diagram of the proposed system. (Source: Original Paper)

The KNN classifier was used for training. It was used for storing featured vectors of nor-

malized binary images and class labels of training data sets. Separate KNN classifiers were

trained for the Bengali alphabet and numeral signs with different K values. The architecture

is shown in Figure 2.23. For their dataset, they used 3600 images of 36 Bangla alphabets
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and 1000 images of numeral signs. 6 vowels and 30 consonants were used. Their images

were performed by 10 people, 6 are male and 4 are female. Accuracy for BdSL alphabets

was 91.73% and for numeral recognition, it was 96.53%.

Limitations:

They faced a problem in differentiating ‘ ’ and ‘ ’ . They got only 72-73% accuracy for these

letters. All their images were on the same background which is a downside as it reduces

versatility.

2.2.1.3 Bangladeshi Sign Language Recognition Employing Neural Network Ensem-

ble (2012)

Topic:

This system proposed a Bangladeshi Sign Language recognizer using NCL algorithm. It can

interpret Bangladeshi Sign Language into Bengali text and vice-versa [17].

Project Details:

The process started with the detection of the skin color of hand in front of a webcam to

capture the images of BdSL. It was done for different environments. The images were con-

verted into threshold value and then normalized to 30× 33 scale pixels. Then they applied

the feature extraction method and they applied NCL algorithm to train those images. They

have an average accuracy of 93%. The whole block diagram is shown in Figure 2.24.

Figure 2.24: Block diagram of the proposed BdSLR. (Source: Original Paper)
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Limitations:

This method of recognition needs conversion, pre-processing and feature extraction of image

dataset.

2.2.1.4 An Automated Bengali Sign Language Recognition System Based on Fingertip

Finder Algorithm (2015)

Topic:

This paper presents a new algorithm to identify Bengali Sign Language (BdSL) for recogniz-

ing 46 hand gestures. They proposed a system that will recognize alphabets and numerals

of BdSL using the [16] fingertip finder algorithm. Project Details:

At first, they constructed a database of 2300 images of Bengali signs. Images were resized

into 260×260 pixels and converted to binary. Otsu’s thresholding method was used for this

conversion. After cropping the region of interest then the feature extraction was started.

Feature extraction stage was implemented by finding the points of visible fingertips and

the centroid of the hand region. Based on these points, ten features were extracted from

each image. Then they applied the fingertip finder algorithm to find the positions of the

fingertips. The architecture is shown in Figure 2.25.

Figure 2.25: ANN architecture (Source: Original Paper)

Multilayered feed-forward neural networks were used with a back-propagation training al-

gorithm to identify the Bengali sign gesture. Each sign of the alphabet was represented by a

vector containing 11 features. The input layer had 11 unit inputs and the output layer was

made of 46 units, as BdSL sign language has 46 static signs. Their average recognition rate

is 88.69%.

Limitations: Not a real-time approach and recognition rate is not high.
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2.2.1.5 Bangladeshi Sign Language Recognition using Fingertip Position (2016)

Topic:

They investigated a BSL recognition scheme based on the fingertip position. The method

considered relative tip positions of five fingers in two dimension space and position vectors

are used to train Artificial Neural Network (ANN) for recognition purpose [18].

Project Details:

At first, they developed a dataset of real hand gesture and then proposed BSL, based on

fingertip position (BSL-FTP), is applied to it. The basic steps of BSL-FTP are pre-processing

of gesture images, generation of tip positions data and finally training ANN with tip posi-

tion of fingers. As relative positions of individual fingers are different in different letters,

tip position values are useful to recognize a letter. ANN is used to train with position values

for recognition purposes. As shown in Figure 2.26, three-layered ANN architecture is con-

Figure 2.26: ANN architecture for BSL-FTP (Source: Original Paper)

sidered in their study. Around 60% of total data is used for training ANN and the rest was

reserved to measure the performance. Over a vocabulary of 40 ASL words, they gained an

accuracy of 95.4%.

Limitations:

This proposed methodology doesn’t work in real-time.

2.2.2 Action Recognition

In this section, some papers related to action and sign word recognition have been reviewed.
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2.2.2.1 Sign Language Learning System with Image Sampling and Convolutional Neu-

ral Network (2017)

Topic:

This paper worked with consecutive movements of a hand within a time period and gave

them a single meaning using CNN [19].

Project Details:

At first, a video of sign language demonstration is sampled and concatenated into an image.

Data is created directly from the demonstration video as it is easy to add recognizable mo-

tion. After that, the image became the input of the convolutional neural network (CNN).

From the training data, CNN selects the candidate with high probabilities. Their flow dia-

gram is shown in Figure 2.27.

Figure 2.27: Flow diagram of the system. (Source: Original Paper)

They selected six various sign language actions for the experiment. They had a total of 21

data sets among them 20 were used as learning data and one was test data.

The main advantage of this method is it uses only 2D images so it can easily be done with

a cheap camera. The size of the training data is relatively small because the images are

sampled.

Limitations:

But the accuracy is relatively low, compared to other techniques it is only 86%.
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2.2.2.2 Real-time American Sign Language Recognition with Convolutional Neural

Networks (2016)

Topic:

This paper presented the development and implementation of an American Sign Language

(ASL) finger-spelling translator based on CNN [10].

Project Details:

Their system translates the video of ASL signs of a user to text. For their input, they obtained

videos of the user signing. Then classified each frame in the video to a letter. The classi-

fication is done using a convolutional neural network (CNN). They used a soft-max based

classification. Their dataset is divided into two types: color images and depth images. The

dataset of color images is made of 24 static signs of ASL captured by 5 users and it contained

over 65,000 images. They used 2,524 close up images for depth images that were placed

over a uniform black background as shown in Figure 2.28.

Figure 2.28: Dataset examples. Left: Surrey University. Right: Massey University. Top left:
‘y’. Bottom left: ‘k’. Top right: ‘i’. Bottom right: ‘e’. (Source: Original Paper)

Limitations:

Their dataset was on the same background. They were failed to train the letter ‘j’. Their

accuracy suffers for the letters ‘k’ and ‘d’.

2.2.2.3 Real-Time Sign Language Gesture (Word) Recognition from video sequences

using CNN and RNN (2018)

Topic:

They have made an application by which sign language gestures can be recognized. They

have trained the model on spatial features and used the inception model which is a deep

convolutional neural network (CNN). Furthermore, they have used the recurrent neural

network (RNN) to train the model on temporal features [8].
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Project Details:

Sign language is a sequence of gestures that generate a meaningful sentence. They worked

with multiple gestures of Argentinean Sign Language. They extracted the keyframe, based

on gradient, to split the video to independent isolated gesture. The features were extracted

from gestures by applying Orientation Histogram and Principal Component Analysis. Cor-

relation, Manhattan, and Euclidean distance were used for classification. They found better

accuracy using correlation and Euclidean distances. CNN and RNN have been used in their

work.

CNN has been used for capturing local spatial patterns in the data. They are great at finding

patterns and then use those to classify images.

RNN is used for recognition tasks. They have used Long Short-Term Memory (LSTM) which

is a variation of RNN with LSTM units. The first layer feeds input to the upcoming layer.

Their model is a wide network consisting of a single layer of 256 LSTM units. This layer is

followed by a fully connected layer with soft-max activation. Finally, a regression layer is

applied to perform a regression to the provided input. The detailed flow of layers is given

in Figure 2.29.

Figure 2.29: Full flow of layer-based work. (Source: Original Paper)

They have used the prediction approach and pool layer approach for their method.

In the prediction approach, spatial features for individual frames were extracted using the

inception model (CNN) and temporal features using RNN. In the pool layer approach, they

used CNN to train the model on the spatial features and passed the pool layer output to the

RNN before it is made into a prediction.

They obtained an accuracy of 95.217% and showed that CNN along with RNN can be suc-

cessfully used to learn spatial and temporal features and classify sign language.
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Limitations:

Using a high number of features has improved the correct classification rate for most of

the gestures, but that causes the RNN to discover random noise in the finite training set.

Hence, it learned some features that did not add any value to the judgment and have led to

overfitting. The performance using the prediction approach is not up to the mark.

2.2.2.4 An Unsupervised Approach for Human Activity Detection and Recognition

(2013)

Topic:

In this paper, they used K-means clustering and simple template models to achieve human

activity detection and recognition in an unsupervised manner. They extracted the features

from the skeleton data obtained from an inexpensive RGBD (RGB-Depth) sensor [10].

Project Details:

They have worked with human activity recognition and they have used unlabeled observa-

tions for their purpose. They have used the data from an RGBD sensor to deal with unlabeled

observations. Their work is based on visual data. With unsupervised human activity recog-

nition, an intelligent system can autonomously detect new activities. This allows the system

to function autonomously without introducing new activity models which are the case of

supervised learning.

Their work is done on three steps. Extracting features from skeleton data, activity detection

by clustering and then activity detection using templates.

For extracting features from skeleton data at first they obtained the raw data which coor-

dinates directly from the RGBD sensor. In their work, each activity observation is sampled

for a window of two seconds. At 30fps, each activity observation contains 60 frames at full

resolution. The features are formed based on a human’s range of movements. For each

pose in each frame, the features are extracted from the coordinates of the different joint

positions. The vectors are formed locally (between joints) and normalized, scale invariant

to the size of the subject.

Activity detection finds new activities. They used K-means clustering to group similar activ-

ities and discriminate one from the other.

To model each activity they used the centroid of the cluster as the template for each activity.

Limitations:

The first is the ability of the system to determine the number of clusters, (k value) by itself.

There are a number of ways to determine the k value including the use of cluster validity
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indices.

Another issue is the confusion of highly similar activities. Their results show an average

detection performance of 80.4% precision and 83.8% recall.

2.2.2.5 Unsupervised Learning for Physical Interaction through Video Prediction (2016)

Topic:

In this paper, they developed an action-conditioned video prediction model that explicitly

models pixel motion, by predicting a distribution over pixel motion from previous frames.

Their model explicitly predicts motion and it is partially invariant to object appearance

enabling it to generalize to previously unseen objects [10].

Project Details:

Learning to predict physical phenomena poses many challenges since real-world physical in-

teractions tend to be complex. They proposed a method which does not require the model

to store the object and background appearance. Such appearance information is directly

available in the previous frame. They developed a predictive model that merges appear-

ance information from previous frames with motion predicted by the model. As a result,

their model is better able to predict future video sequences for multiple steps, even involving

objects not seen at training time. They have used Dynamic Neural Advection (DNA), Con-

volutional Dynamic Neural Advection (CDNA) and Spatial Transformer Predictors (STP) for

their work.

With DNA they predicted a distribution over locations in the previous frame for each pixel

in the new frame and the predicted pixel value is computed as an expectation under this

distribution. They kept the dimensionality of the prediction low by doing this.

With CDNA they predicted the motions of different objects in different regions of the image.

Instead of predicting a different distribution for each pixel, their model predicts multiple

discrete distributions that are each applied to the entire image via a convolution, which

computes the expected value of the motion distribution for every pixel. Their work is based

on the idea that pixels on the same rigid object will move together, and therefore can share

the same transformation.

With STP their model produced multiple sets of parameters for 2D affine image transforma-

tions and applied the transformations using a bi-linear sampling kernel.

Limitations:

Their model directly predicts the motion of image pixels and naturally groups together pixels

that belong to the same object and move together but it does not explicitly extract an internal
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object-centric representation.

2.3 Summary

In this chapter, firstly we have have described the necessary architectures to demonstrate

our system in further chapters. These architectures include Neural Network, Convolutional

Neural network, Transfer learning, Faster R-CNN, Long Short Term Memory(LSTM). Then

we reviewed a total number of 10 research articles and discussed about their working pro-

cedures. These reviews are subdivided into two other sections - one section contains objec-

tion recognition related reviews and another section is related to action recognition based

reviews. We have summarized their work and also mentioned their limitations.
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Chapter 3

Our Dataset

Our project involves the recognition of Bangladeshi Sign Language (BdSL) using deep learn-

ing methods. While investigating this research domain, we found a lacking of a proper BdSL

dataset to integrate with deep learning models. So, we had to build our own dataset. We

have divided our datasets into two groups - an image dataset for sign letter recognition, and

another is a video dataset for sign word recognition. Our datasets are designed focusing on

the necessity of training deep learning models discussed in the earlier section.

3.1 BdSLImset

BdSL letters are difficult, consist of different gestures. Also, some of the letters have similar

gestures, hard to differentiate for a computer vision system. Large datasets can give a higher

accuracy and confidence rate in recognition of sign letters. Some examples of BdSL letters

has been shown in Figure 3.1.

Figure 3.1: Different signs of BdSL letters are shown here.

Real-time Sign Letter recognition can be fit into the domain of image localization. The

system has to find if a sign exists in the image and if it exists which sign it is. For this

purpose the training datasets must consist of :

• Robust Background - with various lighting conditions and dynamicity.



3.1. BDSLIMSET 36

• Gestures must have variation in angles from multiple subjects.

• Bounding box variables (Xmax, Xmin, Ymax, Ymin) to detect where the sign gesture

is in the image. An example of a bounding box on the image is shown in Figure 3.2.

Figure 3.2: Bounding box detecting a sign.

3.1.1 Bangladeshi Sign Language Image Dataset - BdSLImset

As we’re working on BdSL recognition in real time, there can be thousands of different

backgrounds and variations in recognition time. For this purpose, the dataset had to be

very enriched to build such a robust classifier. Training images needed to have variations

in the signs of letters, the backgrounds and also the lighting conditions. Therefore, we kept

these factors in considerations while collecting images for this dataset. We created a dataset-

BdSLImset. Figure 3.3 shows some sample images of BdSLImset.

• The gestures are recorded in multiple orientations, i.e. in different angles to train our

model to recognize the letters in any variation.

• As we know that our testing environment in real-time can have many backgrounds, to

recognize them correctly our dataset has multiple backgrounds and lighting scenarios.

• The images were prepared with people of different ages, gender, etc.

Figure 3.4 shows variations of each class in the BdSLImset.
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Figure 3.3: Sample sign language images in BdSLImset dataset for different sign letters with
different background and other variations.

Figure 3.4: Sample sign language images in BdSLImset with dynamic background. These
images belong to class ‘ ’.

3.1.2 Dataset Specifics

Each image size is less than 200kb and the resolution is not more than 700×1280. Currently,

our BdSLImset dataset has 10 different labeled sign letters. We collected about 200 pictures

for each gesture. For each letter about 200 sign images of 20 persons of different ages and

genders have been captured with varieties of backgrounds. The dataset is divided into a

training set and testing set with a ratio of 8:2. After gathering images, we selected the

region of each of the hand gestures with a bounding box and labeled them (see Figure 3.5).

Thus the initial training data are prepared.

All subjects were right-handed non-signers and were taught how to perform the signs during

the recording session by showing them a video of the signs as well as performed by one of

the authors. All subjects practiced each sign a few times before recording.

Our dataset is verified by the teachers of Dhaka Bodhir School. Academic, educational or
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personal use of our dataset is allowed without restrictions.

An overall review of BdSLImset has been given in Table 3.4 and the letters with correspond-

ing ‘ID’ are shown in Table 3.5.

Figure 3.5: Images with bounding box.

For some specific letters, we have collected above 500 images. In total, we collected a total

of about 2000 images.

Table 3.1: BdSLImset Description.

Total Im-
ages

Total
Class

Images/
Class

Image
Size

Image
Resolu-
tion

Image
Back-
ground

No. Of
Person
Partici-
pated

Training
Set : Test
Set

2000 10 200 1 <=200kb <=
700*1280

Dynamic 20 8:2

3.1.3 Other BdSL Datasets & BdSLImSet

Most of the existing BdSL detection models dataset do not have variation in background

and lighting conditions. Most datasets are neither open source for future research domain.

A comparison between datasets used in previous works and our dataset is shown in Table

3.3.

3.2 BdSLVidset

Recognition of sign words falls under the domain of action recognition, which means recog-

nizing frames in sequence for each word. For word recognition, we needed a video dataset.

1‘ ’ and ‘ ’ have about 500 images in each class.
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Table 3.2: BdSL sign letters in BdSLImset and corresponding ‘ID’.

Id Gesture
1 oo ( )
2 a ( )
3 i ( )
4 e ( )
5 u ( )
6 k ( )
7 kh ( )
8 ga ( )
9 dh ( )
10 o ( )

Table 3.3: Comparisons between datasets used in previous work and in our method.

Related works Background Image Per
Class× To-
tal Classes

No. of
Signers

Available

Rahman et
al.2014 [20]

Static 36× 10 10 ×

Rahman et al.
2015 [21]

Static 10× 10 10 ×

Ahmed et
al. [18]

Static 37× 14 3 ×

Our (BdSLIm-
set)

Randomized 10× 10 10 Ø
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As no previous research is done on BdSL word recognition using deep learning, there are

no available datasets. We have generated our own BdSLVidset for our system. An example

of BdSL word ‘You’ as a sequence of images is given in Figure 3.6.

Figure 3.6: The sequence of images of a video gesture belonging to class ‘Tumi (You)’.

In Figure 3.7, it can be noticed that only with the variation of palm movement the words

are recognizable. So for the purpose of recognizing the position of the hand, we can simply

remove all the background and only track the palm movement.

3.2.1 Bangladeshi Sign Language Video Dataset - BdSLVidset

BdSLVidset is inspired by the dataset of the Argentine Sign Language Dataset [14]. Currently,

our BdSLVidset dataset has 4 different labeled sign letters. We collected about 50 videos for

each gesture and 5 subjects have participated. The dataset is divided into a training set and

a testing set with a ratio of 6:4. An overall review of BdSLVidset has been given in Table 3.4

and the words with corresponding ‘ID’ is shown in Table 3.5.

Table 3.4: BdSLVidset Description.

Total
Videos

Total
Class

Videos/
Class

Video
Size

Video
Back-
ground

No. Of
Person
Partici-
pated

Training
Set : Test
Set

200 4 50 <=800kb White
with
lighting
variation

5 6:4

3.2.2 Recordings

The database was recorded in two sets. The first recording was done in an outdoor environ-

ment with natural lighting. While the second recording was done in an indoor environment

with artificial lighting, to provide differences in illumination between signs. In both sets
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Figure 3.7: Samples before and after background removal of class ‘Kemon’, ‘Tumi’ and ‘Ami’
from top to bottom.

of recordings, subjects wore clothes having a different color than the hand gloves and per-

formed the signs standing or sitting, with a white wall as a background. To simplify the

problem of hand segmentation within an image, subjects wore red-colored gloves. These

substantially simplify the problem of recognizing the position of the hand and performing

its segmentation and remove all issues associated with skin color variations, while fully

retaining the difficulty of recognizing the hand-shape. Each sign was executed imposing

few constraints on the subjects to increase diversity and realism in the database. All sub-

jects were right-handed non-signers and were taught how to perform the signs during the

recording session by showing them a video of the signs as well as performed by one of the

authors. All subjects practiced each sign a few times before recording.
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Table 3.5: BdSL sign words in BdSLVidset and corresponding id.

ID Gesture
1 Tumi
2 Ami
3 Kemon Acho
4 Valo Achi

The camera employed was the same in both sets of recording (Xiaomi POCOPHONE). The

camera was placed 2m away from the wall. The resolution of the videos is 1080× 2246, at

30 frames per second.

3.2.3 Pre-Processings

In the video dataset, each video was temporally segmented so that the frames in the begin-

ning or end of the video with no movement in the hands were removed. After that, each

video was divided into 40 frames and converted to gray-scale images (see Figure 3.8 and

Figure 3.9).

Figure 3.8: Final sample after processing and background removal of a frame.

3.2.4 Limitations

• A simple colored glove is needed to segment the hand portion from everything else.
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Figure 3.9: 40 frames belonging to a video sample after processing and background removal.

• The background must not contain any similar color to the hand glove.

• Currently, dataset is prepared for only four words.

• Less variation in the background for the system simplicity purpose.

• Our character recognition and word recognition are two different systems and the

work done are completely separated.
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3.3 Summary

In this chapter, we have demonstrated the specifications of our datasets – BdSLImset & Bd-

SLVidset – which have been built by ourselves for our systems. BdSLImset consists of a total

of 2000 images and we have used 10 participants. For BdSLVidset we have collected 200

videos and used 5 participants for data collection.
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Chapter 4

Proposed Methodology

In one of our works, we emphasize identifying and recognizing sign letters in images that

can be categorized as an object detection problem. On the other hand, identifying and recog-

nizing sign words from video frames falls under the domain of action recognition problem.

Our study on real-time object detection leads us to pivot on Faster R-CNN and for action

recognition, RNN based LSTM model is best suited. Therefore, we implemented both of

the two methodologies individually to get the best result from to help the hearing-impaired

community on our own datasets. In this chapter, we only review the essential steps of using

these models in our systems. For more details on the architectural design of the models, sec-

tion 2.1.4 and 2.1.5 and for detailed experimental phase and results on our methodologies,

chapter 5 is referred to the reader.

4.1 Sign Letter Recognition

For Sign Letter recognition, we have used the Faster R-CNN Inception V2 model (section

2.1.4) to train our system. In this section, we provide an overview of our sign letter recog-

nition system starting with input, followed by how the training and testing phase were

designed and also an overview of the real-time user testing phase through our system Bd-

SLImset.

Dataset Preparation:

While investigating, we found lacking a proper dataset to train a neural network. As we

want to develop a real-time system our classifier must be stronger; thus the dataset must be

adequate. Therefore, we focus on developing a dataset and determine the following criteria

for our training images.

1. There must be variations in gestures for the signs of the same type. Images contain
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desired gesture of letter which is partially obscured, overlapped with something else,

or only halfway in the picture

2. Random backgrounds and lighting conditions must be considered.

The above criteria were missing in the previous datasets by different authors and we kept

these in our considerations while collecting training images. A detailed analysis of different

datasets is also provided in our Dataset chapter 3.

Training Phase Input:

Training phase inputs are images from BdSLImset dataset. Each image contains additional

information of it’s labeled class, bounding box values. A batch of 100 images was fed into the

network in each iteration to train. Data augmentation has been done on the input images

before training by the system to make the dataset more robust.

Training Phase:

As mentioned earlier in the overview of Faster R-CNN model architecture in Section 2.1.4,

our system breaks an image into different regions of different anchor size. We have used

three different sizes of anchors of 3 different ratios (see Figure 5.5). The system tries to

identify if there is an object that exists in each region. If the system finds the object it

keeps the anchor for further training to make the convolutional feature map else discard

the region (see Figure 5.6). Then the feature map goes to the RPN and proposes regions

with the probability of that region being a sign gesture of a letter. Figure 4.1 shows the

entire working process of the network. Here, RoI pooling resizes the feature map into fixed

sizes for each proposal in order to classify them into a fixed number of classes.

The system learns from the features with a forward pass and calculates the loss in each

iteration. And through back propagation, the system updates the weight in each layer ac-

cordingly. This process repeats until the loss is under 0.03. For classification sparse cross-

entropy is used and for bounding boxes, Smooth L1 Loss is used. When the loss is minimal,

the system gets ready to identify signs in images.

Test Phase:

Our dataset is divided into train and test sets. The train set has been used in training and the

test set identifies how much our model has actually learned. In this phase, the only image

is passed to the network unlike the train phase with bounding box information. Dividing

images into several regions, the system identifies the signs and gives a prediction. Firstly,

the system tries to identify which region has a sign with the help of the RPN layer and if any

region contains any sign, the system generates bounding box information and predicts its

class. Test set accuracy is calculated by matching the true label and the predicted label of

each image. The test set accuracy of our system is 0.941. Chapter 5 has elaborate description
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on our test set results.

Real-Time Testing:

We have implemented a real-time system that is user-friendly and predicts from real-time

video frames. 30 frames per second are captured from a real-time video and the system

predicts the frames and shows continuous output in the user display interface(see Figure

4.3). It takes no time to recognize and also can identify the change in signs by user instantly.

Flow diagram of Figure 4.4 visualizes our overall BdSL letter recognition system.

4.2 Sign Word Recognition

Sign words contain a sequence of action. Only predicting on one image is not enough, it

needs prediction on multiple frames and to combine the predictions together to identify the

class. The general idea behind sign word recognition is, we first apply CNN-based model to

get feature values, just like sign letter recognition, from each frame. Then we combine these

values sequentially through an RNN based LSTM model. LSTM models take each frame as

input and also keeps the outputs of previous inputs and actually combines them to make a

final prediction.

We have used two methods to train the model on the temporal and the spatial features.

Both methods differ by the inputs given to RNN to train it on the temporal features.

4.2.1 Dataset Used

As mentioned earlier, action recognition needs prediction on multiple frames at one time. It

gets more complicated than just recognizing just a sign letter. Unlike sign letter recognition

system which is trained on a robust dataset, sign word recognition system datasets is more

processed for simplification purpose. BdSLVidset dataset has been used to train our model.

A detailed explanation of our dataset is given in Chapter 3.

4.2.2 Our RNN Model

We created an RNN model based on LSTMs. Its input size varies for our different method-

ologies, explained in later sections. It has 256 LSTM units in the middle followed by a fully

connected softmax layer which size is the same as the number of classes. The last layer is a

regression layer or the output layer (see Figure 4.5).
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4.2.3 Method I

In this approach, we extracted spatial features for individual frames using the inception

model (CNN) and temporal features using RNN. Each video (a sequence of frames) was

then represented by a sequence of predictions made by CNN for each of the individual

frames. This sequence of predictions was given as input to the LSTM (see Section 2).

• First, we will extract the frames from the multiple video sequences of each gesture

(see examples in Section 5).

• After the first step, noise from the frames i.e background, body parts other than hand

are removed to extract more relevant features from the frame.

• Frames of the train data are given to the CNN model for training on the spatial fea-

tures. We have used the inception model for this purpose which is a deep neural net

(see Figure 4.6).

• Store the train and test frame predictions. We will use the model obtained above step

for the prediction of frames.

• The predictions of the train data are now given to the RNN model for training on the

temporal features. We have used the LSTM model for this purpose.

4.2.4 Method II

In this approach, we have used CNN to train the model on the spatial features and have given

the output of the pool layer, before it’s made into a prediction, to the RNN. The pool layer

gives us a 2048 dimensional vector that represents the convoluted features of the image,

but not a class prediction. The rest of the steps of this approach are the same as that of the

first approach. Both approaches only differ by inputs given to RNN.

Real-Time Testing:

We have implemented a real-time system that is user-friendly and predicts from real-time

video frames. 40 frames per second are captured from a real-time video. The user has to

input the time duration of the action in the recorded video and after a while, system outputs

the result. The user has to wear a normal red hand-glove and the background should not

contain any similar color background to the hand-glove. For more details on result section,

reader is reffered to section 5.2.2.2.

Flow diagram of Figure 4.7 visualizes our overall BdSL word recognition system.
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4.3 Summary

In this chapter, we have described our systems architectures elaborately. This section is

subdivided into two other sections - one for letter based recognition system and another

is for word based recognition system. Both of them contains the processes of our systems

evaluation step by step with necessary description, figures and flowcharts.
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Figure 4.1: Detailed architecture of the network. Firstly the input image goes into the
CNN framework and creates a feature map. RPN proposes anchors with higher probability
of being an anchor and the RoI pooling classification is performed at last to finalize the
classification.
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(a) Sub-diving an image with different sizes and ratios of anchors.

(b) Discarding the regions that does not contain any sign letter.

Figure 4.2: Example of anchor boxes of 3 different sizes and shapes. Anchors with three
scales or sizes, 128x128, 256x256, 512x512 and each of the the three boxes have height
width ratios 1:1, 1:2 and 2:1 respectively.
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Figure 4.3: Sample of our real-time systems user interface output. It takes no time to detect
the signs and even the system can also differentiate the simple variations in signs easily
without any background barrier.
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Figure 4.4: Flow diagram of our BdSL sign letter recognition model. Inputs(collected from
BdSLImset are fed into the Faster R-CNN model. Each iteration a batch size of 100 images
is passed to the training system. After training, images from the test dataset are randomly
passed to the trained model. The trained model, search for signs in the image by subdividing
the image into various regions. Finally, passes an output with a probable class label and
bounding box area information.
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Figure 4.5: RNN model with a input layer, followed by a LSTM layer with 256 units, a fully
connected softmax layer and a output layer.

Figure 4.6: Training on CNN of spatial features and prediction. Frames of each gesture are
passed to a CNN-based inception model. This model generates predictions on each frame
for every video of gestures. [8]
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Figure 4.7: Flow diagram of our BdSL sign word recognition model. Frames of each gesture
are passed to a CNN-Inception model. The generated values from this step is passed to
the LSTM model as input. The final training is done on the LSTM model. Test phase goes
through the same steps but in this phase, the system predicts an output for a video-based
learning from the training phase.
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Chapter 5

Experimental Design and Results

This section represents the experimental results of our systems implemented on our datasets.

It is divided into two subsections: Sign Character Recognition and Sign Word Recogni-

tion. We start with the experimental setup followed by the experimental phases and the

final outcomes of the systems.

5.1 BdSL - Sign Character Recognition

This section represents the experimental result of our proposed BdSL letter recognition with

Faster R-CNN model on the prepared BdSLImset dataset. We start with experiment phases

followed by the final outcome of the system.

5.1.1 Experimental Setup

Our techniques are implemented in Tensoflow-GPU V1.5 and cuda V9.0. The

training was performed by adopting the Faster RCNN Inception V2 model. The

experiments have been conducted on a machine having CPU from Intel R©. CoreTM i7 −
7500U of 2.7 GHz, GPU Nvidia 940mx with 4.00 GB and with 8.00GB memory on a Windows

10 operating system.

5.1.2 Experimental Phase

We have used different versions of BdSLImset dataset and also two models on the final

version of the dataset we generated. We will describe the results for the training and testing

set images from our datasets and also the application level by the users in real time.
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5.1.2.1 Method I

Dataset Used: BdSLImset Dataset (Version−1).

It had a much lesser number of images per class and fewer variation in the dataset (see

Table 5.1).

Model Applied: Faster R-CNN

Output: The output of this approach has been described in Table 5.2

Table 5.1: BdSLImset- (Version−1) dataset description.

Total Class 10
Number Of Images per Class 50

Table 5.2: Results of first approach

Training Time 8 hours
Average Accuracy (On Test Set) 0.8
Detection Accuracy (In Real-time) Faulty

Comments:

1. The results are not satisfactory, both on the test set and application level.

2. Need more dataset to train the model as the sign letters have many similarities among

themselves. So it is hard for the computer vision system to recognize.

5.1.2.2 Method II

Dataset Used: BdSLImset Dataset (Final Version).

After our initial experiment, we generated a much larger dataset for our classifier system

and tried a different model to build a robust classifier. The elaborate dataset description is

given in Chapter 3.

Model Applied: Faster R-CNN , YOLO- Inception V2 Model

Output: The comparison between the outcome of the two applied models have been de-

scribed in Table 5.3.

Comments:

1. Faster R-CNN model outperformed YOLO Inception V2 on our dataset.
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2. An increased dataset helped the classifier system to learn about the features more

accurately.

3. But for YOLO Inception V2 Model, this version of our dataset is still not enough. YOLO

is claimed to be less calculational expensive and more robust as a model. But it has

more hidden layers, need more powerful GPU and processing power and a larger

dataset to get trained on. YOLO models are also compatible with mobile applications

also.

Table 5.3: Comparisons between two applied models on BdSLImset.

Models Faster R-CNN YOLO Inception V2 Model
Training Time 12 hours 8 hours
Average Accuracy
(On Test Set)

0.9415 0.6

Detection Accuracy
(On Application
Level)

Accurate with average
of 90% confidence rate

Faulty

As from all the above results, we can finally come to the conclusion that Faster R-CNN

The inception model on BdSLImset has really performed well. It has served our purpose of

building a robust classifier for the sign letter recognition system. The elaborate experimental

results on the Faster R-CNN model have been described in the further sections.

5.1.3 Experimental Result

We split this section into two other subsections. At first, we will describe the training phase.

In the latter part, we will discuss our results.

5.1.3.1 Training

The initial training was for 10 classes with 50 images for each letter in the dataset model. It

took about 8 hours and 28000 iterations to train the model. Training started with a loss of

3.00 and quickly dropped to 0.8. We stopped our training when the loss became constant

at 0.07 (see Figure 5.1a).

We increased our dataset with more images for all the classes. This dataset contains 200

images for each class. And then we trained with our model again. It took about 12 hours

to train and training started with a loss of 2.8 and quickly dropped to 0.9. We stopped our

training when the loss became constant at 0.03 (see Figure 5.1b).
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(a) First Approach (b) Second Approach

Figure 5.1: Tensor Board loss graph.

5.1.3.2 Results on Test Dataset

For initial training, the result was not satisfactory. As the sign letters have many similarities

among them, the detection were not accurate for all letters especially for the letters with

similar hand gestures. But later it gave an accurate result with an average of 90% confidence

rate.

In our later training with the increased dataset, we got an extraordinary result. The accu-

racy was higher and it was detecting all the letters almost perfectly. The results of Table 5.4

are based on the Faster R-CNN model classifier on our final version of BdSLImset dataset.

The table shows the accuracy of each class on the test dataset. On testing time, the images

from testing were given randomly.

Table 5.4: Results on the letters with accuracy.

Id Gesture No. Of Image In Test Set No. Of Correct Classification Accuracy(%)

0 oo ( ) 40 38 95

2 a ( ) 40 40 100

3 i ( ) 40 35 87

4 e ( ) 40 35 87

5 u ( ) 40 30 75

6 k ( ) 40 40 100

7 kh ( ) 40 40 100

8 ga ( ) 40 40 100

9 dh ( ) 40 40 100

10 o ( ) 40 39 97.5
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5.1.3.3 Results On Real Time System by Users

We have implemented a real-time system to test our classifier model by the users. We tested

our trained model in various environments and with different persons and we got a satis-

factory result. We tested our system on various backgrounds by different users (see Figure

5.2). The confidence rate was 98% on average.

5.2 BdSL - Sign Word Recognition

We have implemented two different models using our BdSLVidset dataset. We describe this

part both on the training and testing videos that are available in our datasets and also on

application level by the user in real time.

5.2.1 Experimental Setup

Our techniques are implemented in Tensoflow-GPU V1.5 and cuda V9.0. The

training was performed by adopting the Faster RCNN Inception V2 model. The

experiments have been conducted on a machine having CPU from Intel R©. CoreTM i7 −
7500U of 2.7 GHz, GPU Nvidia 940mx with 4.00 GB and with 8.00GB memory on a Windows

10 operating system.

5.2.2 Experimental Phase

We have implemented two different models using our BdSLVidset dataset. We describe this

part both on the training and testing videos that are available in our datasets and also on

application level by the user in real time.

5.2.2.1 Method I

In this approach, we divided each video of gestures into 40 frames. For each frame spatial

feature is extracted using Deep Neural Network Inception Model and temporal features

using RNN. Each video was then represented by a sequence of predictions made by CNN

model for each individual frames and this sequence of predictions was given as input to the

RNN.

Step 1:

Extracting frames from the video sequences (see Figure 5.3). And the image frames go

through necessary processing (described in Chapter 3).



5.2. BDSL - SIGN WORD RECOGNITION 61

Step 2:

The frames of train data are then fed into the Deep Neural Net Inception model for extracting

the spatial feature of each image. This returns a list of values of the probability of the frame

belonging to each class (see Table. 5.5). As we have 4 class in our system, so we get 4 class

probabilities. These values are stored in a .pkl file.

Frames Spatial Feature Value (Class Predictions)
Extracted By CNN:

Frame 1:

[[0.9968306422233582,
0.002878435654565692,
0.0002908589376602322,
0.0068306422233582], ‘Ami’]

Frame 2:

[[0.9968306422233582,
0.002878435654565692,
0.000290858937232266,
0.00306422233576], ‘Ami’]

Table 5.5: The given illustration is of how each frame is assigned a spatial value by CNN.

Step 3:

This stored values are passed into the RNN ( LSTM model) for training on the temporal

features (see Figure 5.4).

5.2.2.2 Method II

The first and third step is the same in the second approach but the RNN is not trained with

class probabilities of each frame rather the convoluted features of each frame is feed into

the RNN (see Table. 5.6). These values are stored in a .pkl file. The CNN model returns the

output of the pool layer, not the output layer and which is a 2048 dimensional vector.
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Comments:

1. The result is satisfactory for both models but as we have fewer classes. The actions

do not have many similarities among them and we have a pretty large dataset. It may

vary when the number of classes increases.

2. Approach 1 has some drawbacks, although it is faster in the training phase and less

computational expensive but when the number of classes increases the time need

for each prediction increases. The length of a probabilistic prediction by CNN in the

sequences of predictions of frames is equal to the number of classes to be classified.

3. But for Approach 2, faster in this case as the RNN’s input layers do not depend on the

number of classes and must give a higher accuracy as well even when the number of

classes is increased.

Frames Spatial Feature Value (Pool Layer Output)
Extracted By CNN:

Frame 1:

[[0.2489597201347351,
0.07230774313211441,
0.27201735973358154,
0.27852416038513184,
0.028210513293743134,
0.5794256329536438, ....],‘Ami’]

Frame 2:

[[0.2489597201347351,
0.07230774313211441,
0.27201735973358154,
0.27852416038513184,
0.028210513293743134,
0.5794256329536438, ....],‘Ami’]

Table 5.6: The given illustration is of how each frame is assigned a spatial value by CNN.



5.3. SUMMARY 63

Table 5.7: Sample Table

ID Gesture Video
Classification Accuracy (%)

Approach1 Approach2 Approach1 Approach2
1 Ami 20 20 20 100 100
2 Tumi 20 20 20 100 100
3 Kemon_Acho 20 20 20 100 100
4 Valo_Achi 20 19 20 100 95

5.2.2.3 On Real Time System by Users

Our system records the video from users and the user must specify the duration of gestures

by giving input of start and end time of which portion of the video contains sign, for system

to predict from that real-time video. Our system can predict multiple words at a given time

duration. Our system is tested for both of our two methodologies. Comparisons between

the time of prediction for both approaches is shown in Table 5.8.

We tested our system on various backgrounds by different users. The Figures in 5.5, 5.6 and

5.7 demonstrate the results of the real-time recognition.

Comments:

1. Approach 2 based system outperforms the Approach 1 based system in every way.

Convoluted features rather than class prediction probability seem to be much more

efficient in training an RNN model for gesture recognition.

Table 5.8: Prediction comparison between different approaches.

Approaches Time Needed To De-
tect Each Gesture

Multiple Gesture at a
time

Approach 1 About 1.30 minutes No
Approach 2 About 30 seconds Yes

5.3 Summary

In this section, we have described the results of our systems step by step with necessary

figures and tables. We have used different methods and architectures for our system. Each

of the results are described separately in this section.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5.2: Some results of real time detection. This experiment had been done on various
situation, i.e. different background, illumination and angles. The 1st column shows the
detection and the 2nd column has a zoom version of detected portion for better investiga-
tion. A reference sign is included at the rightmost column as ground truth collected from
BdSLImSet.
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Figure 5.3: Pre - processing on video dataset. Backgrounds are removed
and each frame is converted to gray-scale image.

Figure 5.4: This figure represents a visualization of how frames spatial values are
passed in LSTM model to train.
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(a)

(b)

Figure 5.5: Some results of real time detection of word in different backgrounds by different
subjects. The user first has to start recording a video of sign, by clicking the snapshot button.
To finish recording stop button has to be pressed. After recording, the user has to give input
of the start (t1) and end (t2) time from the recorded video, containing sign in that portion
and then click predict button to see the results. In (a) start time is 0 second and end time
is 1 second. These inputs are given by the user. The system has predicted ‘Tumi’ for that
duration of video & in (b) ‘valo’ has been recognized similarly.
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(a)

(b)

Figure 5.6: Continuation of Figure 5.5. Some results of real time detection of word in
different backgrounds by different subjects. (a) ‘ami’ and (b) ‘kemon_acho’, these classes
have been recognized by our system on a real-time recorded video in different backgrounds
by different subject.
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Figure 5.7: Continuation of Figure 5.5. In this output, system has recognized two gestures
at a time. User has given input of t1 = 2 second and t2 = 4 second after recording the
video in real-time. This duration of video contained two sequential gestures. And the sys-
tem has recognized two gestures successfully. Output of two recognized class ‘Tumi’ and
‘Kemon_acho’ is displayed in the box by the system.
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Chapter 6

Conclusion and Future Work

In this paper, we have developed a system that would recognize BdSL-Letters and BdSL-

Words in real time.

We have created our own BdSLImset for our system. Our dataset has 10 different labeled

sign letters. We collected about 200 pictures for each sign. Images of different BdSL signs

from our BdSLImset dataset were trained by Faster R-CNN based model to solve the prob-

lem of sign language recognition. We obtained an average accuracy rate of 98.2 percent

and recognition time was 90.03 milliseconds.

We have generated our own BdSLVidset for our system. We collected about 50 videos for

each gesture where 5 subjects have participated. Each video was then represented by a

sequence of predictions made by CNN model for each individual frames and this sequence

of predictions was given as input to the RNN. The result is satisfactory for both models.

Different possible avenues of future exploration of our research are discussed below :

• The system has limitations while recognizing the letters, which have many similarities

among their patterns. The problem might be overcome with more image data for those

letters.

• The number of class in our video dataset, made for video recognition is very small,

only for four signs. Dataset has to be increased for multiple classes. We also need to

improve our system on word recognition for detecting the gestures at a much shorter

time.

• Also, the image size is a factor, as data training requires a huge amount of time. Our

research is still ongoing progress. As we will be needing huge amount of data for our

work, for data collection process-

−We need to conduct a number of workshops on Deaf School and we have already

had a meeting with the principal of the school.
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− We have also already arranged a meeting with the officials of the Centre for

Disability & Development (CDD) to help us with our idea.

−We will be always need to keep communication with the signers to maintain the

user-friendliness of our system.

• For better word recognition we need a much larger dataset, and for a feasible system

for users, the system has to cope with multiple varying backgrounds and recognize

the words without any added gloves. In the future, we have the plan to evaluate our

model by genuine users to sort out its limitations and improve the system. This will

also help us see how the system reacts to real-life situations and how clearly it can

recognize the pattern and interpret effectively.

• We need to increase our dataset further for both BdSLImset and BdSLVidset, to make

a complete dataset of all the letters and words.

• We plan to make a mobile system using YOLO. Our final goal is to merge both of our

systems, and create a complete sign language application, which can both recognize

all BdSL-Letters and BdSL-Words in real time.
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