
BdSL36: A Dataset for Bangladeshi Sign Letters

Recognition

Oishee Bintey Hoque1, Mohammad Imrul Jubair2, Al-Farabi Akash3, and Md.
Saiful Islam4

Ahsanullah University of Science and Technology, Bangladesh
{1bintu3003,3alfa.farabi,4saiful.somum}@gmail.com

2mohammadimrul.jubair@ucalgary.ca

Abstract. Bangladeshi Sign Language (BdSL) is a commonly used med-
ium of communication for the hearing-impaired people in Bangladesh. A
real-time BdSL interpreter with no controlled lab environment has a
broad social impact and an interesting avenue of research as well. Also,
it is a challenging task due to the variation in different subjects (age,
gender, color, etc.), complex features, and similarities of signs and clus-
tered backgrounds. However, the existing dataset for BdSL classification
task is mainly built in a lab friendly setup which limits the application of
powerful deep learning technology. In this paper, we introduce a dataset
named BdSL36 which incorporates background augmentation to make
the dataset versatile and contains over four million images belonging to
36 categories. Besides, we annotate about 40, 000 images with bounding
boxes to utilize the potentiality of object detection algorithms. Further-
more, several intensive experiments are performed to establish the base-
line performance of our BdSL36. Moreover, we employ beta testing of
our classifiers at the user level to justify the possibilities of real-world
application with this dataset. We believe our BdSL36 will expedite fu-
ture research on practical sign letter classification. We make the datasets
and all the pre-trained models available for further researcher.

1 Introduction

Sign language is a non-verbal form of communication used by deaf and hard of
hearing people who communicate through bodily movements especially with fin-
gers, hands and arms. Detecting the signs automatically from images or videos
is an appealing task in the field of Computer Vision. Understanding what sign-
ers are trying to describe always requires recognizing of the different poses of
their hands. These poses and gestures differ from region to region, language to
language, i.e. for American Sign Language (ASL) [1], Chinese Sign Language
(CSL) [2], etc. A considerable number of people in Bangladesh rely on BdSL [3]
to communicate in their day to day life [4], and the need for a communication
system as a digital interpreter between signers and non-signers is quite apparent.
Due to the current resonance of Deep Learning, hand pose recognition [5,6] from
images and videos have advanced significantly. In contrast, sign letter recogni-
tion through a real-time application has received less attention—especially when

2 Oishee Bintey Hoque et al.

it comes to Bangladeshi Sign Language. In this work, we tend to simplify the
way non-signers communicate with signers through a computer vision system for
BdSL by exploiting the power of data and deep learning tools.

Most of the previous work on BdSL and other sign languages [7,8,9,10] can be
described as a traditional machine learning classification framework or as a mere
research as an academic purpose where less focus has been given to build a real-
time recognizing system. We can generalize these researches in two modules: (1)
datasets with several constraints (i.e. showing only hands, single-colored back-
ground) or (2) traditional machine learning classifiers with handcrafted features.
These constrained feature-based methods are not ideal for real-life applications
or to build a proper sign interpreter as these methods rely on the careful choice
of features. With a real-world scenario, the classifier may fail to distinguish the
signs from a clustered background.

Fig. 1: Example images of initially collected BdSL36 dataset. Each image repre-
sents different BdSL sign letter. Images are serially organized according to their
class label from left to right.

In this recent era, deep learning enables the scope of overcoming these con-
straints and achieve a state-of-the-art performance on a variety of image classifi-
cation tasks. But, to train a deep learning classifier, the role of a large dataset is
unavoidable and plays a pivotal role to build a robust classifier. However, deep
learning methods, so far, on BdSL letters recognition are restricted to constraint
or small scale dataset [11,12,13], which is not useful to build a robust classifier.
The collection of sign letter data is challenging due to the lack of open-source
information available on the internet, human resources, the deaf community and
knowledge. On the other hand, BdSL letters may have high appearance similar-
ity, which might be confusing to human eyes as well. Hence, with handcrafted

BdSL36 3

features or small scale datasets, it is a tough job to accomplish to build a robust
interpreter.

To advance the BdSL letters recognition research in computer vision and to
introduce a possible real-time sign interpreter to the community in need, we
present the BdSL36, a new large-scale BdSL dataset in this work. As mentioned
earlier, many factors hinder the process of collecting images with variation to
make a large scale sign letter dataset. We organize 10 volunteers of different ages
and gender to help us with the whole process of collecting the images. Initially,
we receive 1200 images that are captured by the volunteers at their convenient
and natural environment (see fig. 1) followed by thorough checking by the BdSL
experts to assure relevancy of the signs in the data. However, only 25 to 35 im-
ages per class for building a multi-class classifier of 36 classes are not enough.
To compensate for the low data quantity issue, data augmentation has become
an effective technique to improve the accuracy of modern image classifiers by in-
creasing both the amount and diversity of data by randomly augmenting [14,15].
The most common augmentation techniques are translation by pixels, rotation,
flipping, etc. Intuitively, data augmentation teaches a model about invariances,
making the classifier insensitive to flips and translations. Subsequently, to incor-
porate potential invariances, data augmentation can be easier than hard-coding
them into the model directly. In case of a dataset of hand poses, we need vari-
ation in hand shape, skin color, different postures of the sign, etc. Moreover,
making the dataset insensitive to the background, it is also essential to intro-
duce background variation with the subject being in a different position in the
images. To the best of our knowledge, less attention has been paid to find better
data augmentation techniques that incorporate more invariances and resolve the
background variation limitation in a small scale dataset.

In our work, initially, we incorporate traditional data augmentation—rotation,
translation, brightness, contrast adjustment, random cropping, zooming, shear-
ing, cutout [16], etc—on our raw collected dataset which we called BdSL36
version-1 (BdSL35v1). Though these augmentations improve accuracy on the
validation set, when we deploy the classifier and test it with real-life users, it per-
forms poorly. Therefore, we employ a new augmentation technique—not widely
used as per our knowledge—the background augmentation to introduce second
version (BdSL36v2). Here, we removed the background from our raw dataset
images, perform traditional augmentation on them, and later, stack them over
one million background images downloaded from the internet at random posi-
tions. After that, we perform another set of suitable traditional augmentation
(perspective and symmetric warp with random probability) and build a dataset
of over four million images. Our intensive experiments show that this method
achieves excellent improvement in terms of both accuracy and confidence rate.
We again perform another set of beta testing with two of the classifiers—trained
with background augmented and non augmented data—and achieve a significant
improvement in the results. This experiment shows, even with a very small scale
dataset, it is possible to get the state-of-the-art performance for complicated
features and surpass the limitation of the quantity of the dataset. With this

4 Oishee Bintey Hoque et al.

dataset, we also present another version of the dataset (BdSL36v3) with bound-
ing box labeling for object detection methods which contains over 40 thousand
images labeled manually. Our intention in these experiments is to help the deaf
community in real life by not limiting the sign letter recognition task to a con-
trolled environment. To further validate the value of our proposed dataset, we
also report evaluation on different deep learning networks for the state-of-the-art
classification.
It is worth to note that, in some of the similar papers, the term ’fingerspelling’
is used to refer to the letters of a sign language system, while many other works
represent it as ’sign language’. To minimize the ambiguity, in our paper, we use
the term ’sign letters’ in such context; and the term ’BdSL letters’ to refer the
letters of Bangladeshi sign language in particular.

Our contributions are summarized as follows:

– To best of our knowledge, we build the first largest dataset of the Bangladeshi
Sign Language letter—BdSL36—for deep learning classification and detec-
tion. Our dataset comes with four different versions: raw dataset (BdSL36x),
augmentation on the raw dataset (BdSL36v1), background augmented im-
ages (BdSL36v2) and bounding box labelled dataset (BdSL36v3). We
make all of these versions available to the community so that researchers can
exploit them according to their requirements. We incorporate background
augmentation technique for small scale dataset with the proof of significant
improvement in results through extensive experiment. Dataset can found be
at rb.gy/mm3yjg.

– We conduct extensive experiments on the datasets using deep learning clas-
sification and detection models to establish the baseline for future research.
We also perform beta testing to identify the possibility of deploying this
system in the real world. All these work and experiments are made available
to the research community for further investigations.

2 Related Works

In this section, we first discuss some of the previous works and datasets in
automating BdSL letters recognition, followed by reviewing some works on data
augmentation.

Rahaman et al. [12] use 1800 contour templates for 18 Bangladeshi signs sep-
arately. The authors introduce a computer vision-based system that applies con-
tour analysis and Haar-like feature-based cascaded classifier and achieve 90.11%
recognition accuracy. Ahmed and Akhand [17] use 2D images to train an artificial
neural network using tip-position vectors to determine the relative fingertip po-
sitions. Though they claim to have an accuracy of 98.99% in detecting the BdSL,
their approach is not applicable for real-time recognition. M. A. Rahaman et al.
in [11], present a real-time Bengali and Chinese numeral signs recognition sys-
tem using contour matching. The system is trained and tested using a total 2000
contour templates separately for both Bengali and Chinese numeral signs from

https://rb.gy/mm3yjg

BdSL36 5

10 signers and achieved recognition accuracy of 95.80% and 95.90% with a com-
putational cost of 8.023 milliseconds per frame. But these classifiers only work
in a controlled lab environment. In [13], a method of recognizing Hand-Sign-
Spelled Bangla language is introduced. The system is divided into two phases –
hand sign classification and automatic recognition of hand-sign-spelled for BdSL
using the Bangla Language Modeling Algorithm (BLMA). The system is tested
for BLMA using words, composite numerals and sentences in BdSL achieving
mean accuracy of 93.50%, 95.50% and 90.50% respectively. In [18], the authors
use the Faster R-CNN model to develop a system that can recognize Bengali sign
letters in real-time and they also propose a dataset of 10 classes. They train the
system on about 1700 images and were able to successfully recognize 10 signs
with an accuracy of 98.2%.

The available BdSL datasets are not sufficient enough [11,12,17,18,19] to de-
velop a fully functioned real-time BdSL detection system. Half of these datasets
[11,12,17,20] are also not available for further research. These datasets are fur-
ther built on a controlled lab environment and the only exception is [18] but this
dataset only contains 10 classes.

Recently, data augmentation in deep learning technology widely attracts the
attention of researchers. In [14] introduces an automated approach to find the
right set of data augmentation for any dataset through transferring learned poli-
cies from other datasets. Other auto augmentation techniques by merging two
or more samples from the same class are proposed in [21,22]. Specific augmen-
tation techniques such as flipping, rotating and adding different kinds of noise
to the data samples, can increase the dataset and give better performance [23].
For generating additional data, adversarial networks have also been incorporated
[24,25] to generate direct augmented data.

3 Our BdSL Dataset

3.1 Data Collection and Annotation

We collect and annotate the BdSL36 datasets with the following five stages: 1)
Image collection, 2) Raw data augmentation, 3) Background removal and aug-
mentation, 4) Background augmentation, and 5) Data Labeling with Bounding
Box.

Image Collection. We establish a dataset for real-time Bangla sign letter
classification and detection. Firstly, we visit a deaf school and learn about the
letters they practically use in their daily life. There are total 36 Bangla sign
letters in total. To build a dataset with no background constraint or controlled
lab environment, we make sure to have fair variation in the BdSL36 in terms of
subject and background for both classification and detection datasets. At first
step we organize 10 volunteers to collect the raw images, and two experts on
BdSL train them to perform this task. All of them use their phone cameras
or webcam to capture the images at their convenient environment. After the

6 Oishee Bintey Hoque et al.

collection of images from the volunteers, each image is checked by BdSL signer
experts individually and they filter out the images which contain signs in the
wrong style. After filtration, each class contains 25 to 35 images with a total of
1200 images altogether. We have also incorporated BdSlImset [18], containing
1700 images for 10 classes in our BdSL36 image dataset, which sums up to 2712
images in total for 36 classes (see fig. 1).

Raw Image-Data augmentation. For a real-time sign letter detection, the
classifier must recognize the signs accurately in any form with any variation
in scale, appearance, pose, viewpoint, and background. For most of the object
classification dataset, it is possible to use the internet as the source of collect-
ing the images. However, in the case of BdSL, there are not enough resources,
images, or videos, available on the internet for developing a large scale dataset.
Besides, no significant deaf community, awareness and privacy issues are some of
the factors that hinder the collection of large scale sign datasets. We surmount
this problem with data augmentation. Deep learning frameworks usually have
built-in data augmentation utilities, but those can be inefficient or lack some
required functionality. We have manually augmented our data with all possible
variations. These include several types of transformations on each image with
random probabilities, i.e., affine transformations, perspective transformations,
contrast changes, noise adding, dropout of regions, cropping/padding, blurring,
rotation, zoom in/out, symmetric warp, perspective warp, etc. After the aug-
mentation process, we delete the images if the features get distorted after the
augmentation. Finally, BdSl36v1 (see fig. 2a) has about 26, 713 images in total,
each class having 700 images on average.

(a) (b)

Fig. 2: (a) Examples of background augmented images from BdSL36x dataset,
(b) Examples of bounding box annotated images from BdSL36v3 dataset.

BdSL36 7

Background Augmentation. As mentioned earlier, having a large dataset
is crucial for the performance of the deep learning models. Recent advances in
deep learning models have primarily attributed the quantity and diversity of data
gathered in recent years. However, most approaches used in training these mod-
els only use basic types of augmentation; less focus has been put into discovering
durable types of data augmentation and data augmentation policies that capture
data invariances. In this work, we experiment with background augmentation to
generate a new robust dataset. Initially, we manually remove the background
from each image of the BdSL36x dataset and perform transformations, i.e. ro-
tation (±60◦), brightness and sharpness adjustment, scaling (±10%), random
crop, and zoom in/out, reflection padding, etc. We generate about 12 images
from one image (see fig. 2b). Each image is manually checked by our team to
discard the distorted images after these transformations. We utilize the internet
to collect more than one million background images of various sorts. Then each
of the background-removed augmented, and non augmented images are put into
five different backgrounds at random positions. After that, to ensure diversity,
we employ another set of transformations—such as perspective warp, symmetric
warp, random-crop with various sets of magnitudes—on these images. Finally,
we have 473, 662 images in the second version of our dataset: BdSL36v2.

Data Labeling with Bounding Box. To utilize the features of the deep
learning detection algorithm, we have also generated a dataset with bounding
box labeling. Considering the difficulty and cost of labeling, we randomly select
some images from BdSLv2 for each class and we appoint two volunteers to label
the bounding boxes. Each class contains 1250 images on average with a total of
45, 000 images for 36 classes. The images are labeled following the Pascal VOC
[26] and also a version of YOLO [27] format is available.

A visual representation of the flow of our dataset has been shown in fig. 3.

3.2 Dataset Split

The BdSL36 dataset contains more than four million images in total. We have
three versions of our dataset. The BdSL36v1 contains around 22,000 images and
only split into train and validation set following 80:20 split where the train set
contains approximately 17,600 and validation set 4,400 images. Subsequently,
BdSL36v2 contains around 400,000 images and we follow a roughly 70:5:15 split
as training, validation and testing set. Specifically, this dataset is nearly split into
300,000 training, 20,000 validation and 60,000 test images. On the other hand,
for the object detection dataset, BdSL36v3 is split into 9:1 as 45,500 training
and 4,500 validation images.

3.3 Comparison with Other Datasets

In Table 1, we compare the BdSL36 with other existing datasets related to the
task of BdSL letter recognition. Most of the available BdSL [12,18,19,20,28,29,3]

8 Oishee Bintey Hoque et al.

Fig. 3: The top left image is a raw image captured by one of the volunteers.
The two rows to it’s right shows the sample augmented images generated from
the main image. The leftmost image under the main image has the background
removed. Later, augmentation has been applied to this image shown to it’s right.
From those augmented images, we can see each image contain another set of 3
images with a different background at a different position. All of these images are
different from the main image in terms of shape, brightness, contrast, viewpoint
background, etc. And, the background augmentation helps to add more variation
in a small scale dataset.

BdSL36 9

datasets have background constraint and only hand pose is shown which are not
suitable for the real-time environment applications. Only BdSLImSet [18] has
no such constraints but only has 10 classes. Even if we only consider BdSL36x
dataset from BdSL36, the number of participants and background variation
makes BdSL36x much more diverse and suitable than other available datasets
for deep learning models. Besides, only half of these datasets are available. Due
to all these limitations, with the most existing datasets, a real-world applica-
tion is hard to achieve. Finally, BdSL36v3, is the first and only complete object
detection dataset for BdSL letter detection.

Table 1: Comparison with existing BdSL datasets. The Avail, Bg. Const, BBox,
Avg., ‘Y’ and ‘N’ denotes the availability of datasets to the public, Background
Constraint, Bounding Box, Average, Yes and No respectively.

Dataset Year Class Avail
Bg.

Const
BBox
Label

Sample Avg.

Rahman et al. [28] 2014 10 N Y N 360 36
Rahman et al. [12] 2015 10 N Y N 100 10
Ahmed et al. [29] 2016 14 N Y N 518 37
BdSLImset [18] 2018 10 Y N Y 100 10
Ishara-Lipi [3] 2018 36 Y Y N 1,800 50
Sadik et al. [19] 2019 10 Y Y N 400 40
Urme et al. [20] 2019 37 N Y N 74,000 2,000

OurDataset 2020 36 Y N Y 473,662 13,157

4 Experimental Evaluation

In this section, we empirically investigate the performance of several deep learn-
ing object detection frameworks on the BdSL36 dataset to comprehensively eval-
uate the performance. Our results show that applying only traditional augmen-
tation on a small scale dataset like BdSl36v1 cannot totally overcome the over-
fitting problem and perform poorly in a real-time environment as well. Whereas,
background augmentation yields significant improvement in real-time environ-
ment performance without adding any extra raw data, making the classifier learn
the invariances more accurately and insensitive to the background.

4.1 Experiment Settings.

We use deep learning model architectures - ResNet34 [30] , ResNet50 [30] , VG-
GNet 19 [31], Densenet169 [32], Densenet201 [32], Alexnet [33] and Squeezenet
[34] - as our base model. We remove the last layer of the models and concatenate
an AdaptiveAvgPool2d, an AdaptiveMaxPool2d, a Flatten layer followed by two

10 Oishee Bintey Hoque et al.

blocks of [BN-Dropout-Linear-ReLU] layer. The blocks are defined by the linear
filters and dropout probability (0.5) arguments. Specifically, the first block will
have several inputs inferred from the backbone base architecture, and the last one
will have outputs equal to the number of classes of the data. The intermediate
blocks have many inputs/outputs determined by linear filters (1024->512->36),
each block having inputs equal to the number of outputs of the previous block.
We also add batch normalization at the end, which significantly improves the
performance by scaling the output layer. We train the model in two phases: first,
we freeze the base model and only train the newly added layers for two epochs
to convert the base model’s previously analyzed features into the prediction of
our data. Next, we unfreeze the backbone layers to fine-tune the whole model
with different learning rates. For primary training, we use a minibatch size of 64;
the learning rate is initialized as 0.003, with a div factor of 25, a weight decay
of 0.1, and a momentum of 0.9. Also, to avoid overfitting, we employ a dropout
of 0.5. For the second part of the training, we only change the learning rates
keeping the other parameters identical. As all these networks are pre-trained on
the large scale Imagenet dataset, the earlier layers already know the basic shapes
[35] and do not require much training. The deeper the network goes, the layers
get more class-specific. While training the unfreezing layer, we split our model
into a few sections based on the learning rate. We keep the learning rate lower
for the initial layers than the deeper layers, initialized between 3e−3 and 3e−4.
We use 224×224 sized images with default training time augmentation incorpo-
rated by the library. The in-depth feature-based experiments are implemented
using Pytorch, a fastai library, and performed on Kaggle GPU.

4.2 Evaluation Metrics.

The BdSL36 dataset has extremely common similarities among some classes.
We apply several metrics evaluation on the validation set for the classification
tasks, which include precision, recall, FBeta, accuracy and loss. The precision
(denote as pre) quantifies the correctness of a classifier by the ability not to label
a negative class as positive. The recall (denote as rec) measures the number of
correctly predicted classes out of the number of the actual classes. The FBeta
(denote as FB) score is the weighted harmonic mean of precision and recall. We
utilize Average Precision (AP) for IoU= [.50:.05:.95],[.50],[.75]. We denote AP

for different IoU configuration as AP, AP
1

2 AP
3

4 respectively. With higher IoU,
it gets difficult to detect for the system.

4.3 Classification and Detection with Deep Learning Networks.

In this section, we evaluate the performance of several deep learning model
architectures — ResNet34 [30] , ResNet50 [30] , VGGNet 19 [31], Densenet169
[32], Densenet201 [32], Alexnet [33] and Squeezenet [34] — on BdSL36v2 dataset.

All of these networks are pre-trained on the ImageNet[36] and fined tuned on
the BdSL36v2 dataset with hyper-parameters and settings mentioned in section

BdSL36 11

4.1. Table 2 shows the classification performance on BdSL36v2 validation set
of the deep models. The VGGNet 19 performs best compared to other models
with 99.1% accuracy. All the models in our experiment are trained with the same
parameters and the same number of epochs. It might be possible to use different
discrete parameters for other models or train for a longer time to perform better.
We can see that ResNet34, ResNet50, VGGNet 19, Densenet169, Densenet201
perform similarly in terms of all the evaluation matrices whereas Alexnet and
Squeezenet perform much poorer than the others. Squeezenet has 41.5% accuracy
with 44.4% precision and 42.4% recall which are very low compared to other
models.

We also evaluate BdSL36v3 on several state-of-the-art object detection meth-
ods. Faster R-CNN (backbone VGG-16) [37] a two-stage based method which
detects objects through first sliding the window on a feature map to identify
the object. Next, it classifies and regresses the corresponding box co-ordinates.
Whereas, one stage based methods, SSD300 (backbone Resnet-50) [38] and
YOLOv3 (backbone DArknet-53) [27] skip the first step of FRCNN and directly
regress the category and bounding box position. Table 3 shows that two-stage
based FRCNN performs better over the other two networks. For the training
of this network, we use the base architecture and parameters of the individual
networks.

Table 2: Classification performance of the deep learning classifiers under different
evaluation metrics on the BdSL36v2 dataset.

Methods Pre Rec FB Acc Loss

ResNet34 [30] 98.29 98.28 98.28 98.17 0.0592

ResNet50 [30] 98.83 98.79 98.8 98.71 0.0421

VGG19 bn [31] 99.17 99.17 99.17 99.10 0.0284

Densenet169 [32] 98.67 98.64 98.64 98.55 0.0481

Densenet201 [32] 98.70 98.65 98.66 98.56 0.0145

Alexnet [33] 84.1 83.9 83.9 83.1 0.58

Squeezenet [34] 44.4 42.4 42.2 41.5 2.15

Table 3: Average precision performance of object detection methods under dif-
ferent IoU thresholds.

Method Backbone AP AP
1

2 AP
1

2

FRCNN [37] VGG16 46.8 81.4 36.59
YOLOv3 [27] ResNet50 28.1 55.3 16.5
SSD300 [38] VGG16 41.2 79.61 36.53

12 Oishee Bintey Hoque et al.

4.4 Further Analysis

As our goal is to generate a dataset that can produce an applicable real-time
system with the help of a deep learning classifier, we further analyze our clas-
sifiers with beta testing. We use two of our classifiers: the first one trained on
BdSL36v1 dataset (without background augmentation), the second one trained
on BdSL36v2 dataset (with background augmentation), both trained on Resnet50.
An evaluation on BdSL36v2 test set, between these two classifiers has been shown
in Table 4. It is to be noted that, the validation accuracy shown in Table 4, is
on individual validation datasets.

Table 4: A comparison between BdSL36v1 & BdSL36v2 trained classifier with
Test Set.

Dataset Val Acc. Acc Pre Recall

BdSL36v1 98.6 36.7 37.2 36.9

BdSL36v2 98.83 96.1 96.8 96.2

Though classifier 1 has good accuracy on its validation set, it performs poorly
on the test set whereas classier 2 performs significantly well both on the valida-
tion set and test set. As the test set is generated from BdSL36v2 dataset, there
is a possibility of the result being biased on the tests. So, we run another exper-
iment at the user level to test the robustness of these classifiers in the real-life
environment. Eight signers perform this evaluation at their own home, and none
of them have participated in the dataset collection process. So, the testing envi-
ronments and the subjects are new to the system. We ask the users to capture
the image of each sign using our system (see fig. 4) and report the prediction
values and confidence rate in the provided excel sheet. For the correct prediction

Fig. 4: Sample images from beta testing with signers with BdSLv2 classifier.

user inputs 1 or 0 otherwise and the confidence rate of the actual class predicted
by the system. For a wrong prediction, we ask the user to capture a sign not
more than three times and mention it in the excel sheet. From the bar chart
shown in fig. 5, even at the user level, we can see an increase of 60% in both

BdSL36 13

accuracy and confidence rate. As the fig. 5 shows, classifier 1 hardly recognizes
any of the signs, and for most of the sign, the users report that they need to
capture images multiple times. The confidence rate is admittedly low enough to
misclassify at any time.

(a)

(b)

Fig. 5: Comparison of (a)confidence rate and (b)accuracy from beta testing be-
tween BdSl36v1(without background augmentation) and BdSL36v2(with back-
ground augmentation) classifiers.

On the other hand, the user-level evaluation shows that, despite a high ac-
curacy on the test set, classifier 2 does not perform well for six classes. Users
report these classes to need multiple captures and predict with a less confidence
rate. In fig. 6, we can see that class 24, and class 14 are incredibly similar and

14 Oishee Bintey Hoque et al.

class 24 has got the worst performance with less than 55% confidence rate and
less than 40% accuracy with multiple tries. Users report shows that class 24 is
mostly misclassified as 14, class 4 is misclassified as 3, and classes 29 and 30 are
misclassified between each other. Consequently, as illustrated in fig. 7, BdSL let-
ters recognition also brings challenges to the detection task. Though the target
is detected accurately, some of the signs get misclassified.

Fig. 6: Signs in BdSL36 letters
with appearance similarity. We
can see from the figure that class
4,6, class 14,24 and class 29,30
have high similarities in appear-
ance. These signs are mostly
misclassified by the classifiers.

Fig. 7: Sample detection results
on the BdSL36v3 dataset. The
top row shows the correctly clas-
sified images, where the bottom
row shows the images which are
correctly detected but wrongly
classified.

5 Conclusion

In this work, we build a large-scale dataset, named BdSL36 with different ver-
sions, for BdSL letters recognition, detection and show the usefulness of back-
ground augmentation. Our dataset includes over four million images of 36 BdSL
letters. Compared with previous datasets, all version of the BdSL36 conforms
to several characteristics of real environments which is suitable for building a
real-time interpreter. Moreover, we also evaluate several state-of-the-art recog-
nition and detection methods on our dataset. The results demonstrate that it is
possible to generate a classifier with a small scale dataset with proper tuning of
the datasets. We hope this work will help advance future research in the field of
BdSL and also for other sign languages.

References

1. Ye, Y., Tian, Y., Huenerfauth, M., Liu, J.: Recognizing american sign language
gestures from within continuous videos. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops. (2018)

BdSL36 15

2. Xue, Y., Gao, S., Sun, H., Qin, W.: A chinese sign language recognition system
using leap motion. In: 2017 International Conference on Virtual Reality and Vi-
sualization (ICVRV). (2017) 180–185

3. Sanzidul Islam, M., Sultana Sharmin Mousumi, S., Jessan, N.A., Shahariar Azad
Rabby, A., Akhter Hossain, S.: Ishara-lipi: The first complete multipurposeopen
access dataset of isolated characters for bangla sign language. In: 2018 International
Conference on Bangla Speech and Language Processing (ICBSLP). (2018) 1–4

4. Tarafder, K.H., Akhtar, N., Zaman, M.M., Rasel, M.A., Bhuiyan, M.R., Datta,
P.G.: Disabling hearing impairment in the bangladeshi population. The Journal
of Laryngology & Otology 129 (2015) 126–135

5. Ge, L., Ren, Z., Li, Y., Xue, Z., Wang, Y., Cai, J., Yuan, J.: 3d hand shape and
pose estimation from a single rgb image. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2019)

6. Yang, L., Li, S., Lee, D., Yao, A.: Aligning latent spaces for 3d hand pose es-
timation. In: The IEEE International Conference on Computer Vision (ICCV).
(2019)

7. Camgoz, N.C., Hadfield, S., Koller, O., Bowden, R.: Subunets: End-to-end hand
shape and continuous sign language recognition. In: 2017 IEEE International Con-
ference on Computer Vision (ICCV). (2017) 3075–3084

8. Efthimiou, E., Fotinea, S.E., Vogler, C., Hanke, T., Glauert, J., Bowden, R., Braf-
fort, A., Collet, C., Maragos, P., Segouat, J.: Sign language recognition, genera-
tion, and modelling: A research effort with applications in deaf communication. In
Stephanidis, C., ed.: Universal Access in Human-Computer Interaction. Addressing
Diversity, Berlin, Heidelberg, Springer Berlin Heidelberg (2009) 21–30

9. Ss, S., S, D.: American sign language recognition system: An optimal approach.
International Journal of Image, Graphics and Signal Processing 10 (2018) 18–30

10. Gattupalli, S., Ghaderi, A., Athitsos, V.: Evaluation of deep learning based pose
estimation for sign language recognition. In: Proceedings of the 9th ACM Inter-
national Conference on Pervasive Technologies Related to Assistive Environment.
(2016) 12

11. Rahaman, M., Jasim, M., Ali, M., Zhang, T., Hasanuzzaman, M.: A real-time hand-
signs segmentation and classification system using fuzzy rule based rgb model and
grid-pattern analysis. Frontiers of Computer Science 12 (2018)

12. Rahaman, M.A., Jasim, M., Ali, M.H., Hasanuzzaman, M.: Computer vision based
bengali sign words recognition using contour analysis. In: 2015 18th International
Conference on Computer and Information Technology (ICCIT). (2015) 335–340

13. Rahaman, M.A., Jasim, M.K., Ali, M.H., Hasanuzzaman, M.: Bangla language
modeling algorithm for automatic recognition of hand-sign-spelled bangla sign lan-
guage. Frontiers of Computer Science 14 (2019)

14. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learn-
ing augmentation strategies from data. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2019)

15. Mun, S., Park, S., Han, D.K., Ko, H.: Generative adversarial network based acous-
tic scene training set augmentation and selection using svm hyperplane. In: De-
tection and Classification of Acoustic Scenes and Events Workshop. (2017)

16. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. CoRR abs/1708.04552 (2017)

17. Ahmed, S.T., Akhand, M.A.H.: Bangladeshi sign language recognition using fin-
gertip position. In: 2016 International Conference on Medical Engineering, Health
Informatics and Technology (MediTec). (2016) 1–5

16 Oishee Bintey Hoque et al.

18. Hoque, O.B., Jubair, M.I., Islam, M.S., Akash, A., Paulson, A.S.: Real time
bangladeshi sign language detection using faster r-cnn. In: 2018 International
Conference on Innovation in Engineering and Technology (ICIET). (2018) 1–6

19. Sadik, F., Subah, M.R., Dastider, A.G., Moon, S.A., Ahbab, S.S., Fattah, S.A.:
Bangla sign language recognition with skin segmentation and binary masking. In:
2019 IEEE International WIE Conference on Electrical and Computer Engineering
(WIECON-ECE). (2019) 1–5

20. Urmee, P.P., Mashud, M.A.A., Akter, J., Jameel, A.S.M.M., Islam, S.: Real-time
bangla sign language detection using xception model with augmented dataset. In:
2019 IEEE International WIE Conference on Electrical and Computer Engineering
(WIECON-ECE). (2019) 1–5

21. Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation learning an optimal
data augmentation strategy. IEEE Access 5 (2017) 5858–5869

22. DeVries, T., Taylor, G.: Dataset augmentation in feature space. IEEE Access
(2017)

23. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification
using deep learning. CoRR abs/1712.04621 (2017)

24. Nielsen, C., Okoniewski, M.: Gan data augmentation through active learning in-
spired sample acquisition. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. (2019)

25. Peng, X., Tang, Z., Yang, F., Feris, R.S., Metaxas, D.N.: Jointly optimize data
augmentation and network training: Adversarial data augmentation in human pose
estimation. CoRR abs/1805.09707 (2018)

26. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
(2012)

27. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. CoRR
abs/1804.02767 (2018)

28. Rahaman, M.A., Jasim, M., Ali, M.H., Hasanuzzaman, M.: Real-time computer
vision-based bengali sign language recognition. 2014 17th International Conference
on Computer and Information Technology (ICCIT) (2014) 192–197

29. Yasir, F., Prasad, P., Alsadoon, A., Elchouemi, A., Sreedharan, S.: Bangla sign lan-
guage recognition using convolutional neural network. In: Proceedings of the 2017
International Conference on Intelligent Computing, Instrumentation and Control
Technologies, United States, IEEE, Institute of Electrical and Electronics Engi-
neers (2018) 49–53 2017 International Conference on Intelligent Computing, In-
strumentation and Control Technologies : ICICICT 2017, Intelligent Systems for
Smart World ; Conference date: 06-07-2017 Through 07-07-2017.

30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
(2016) 770–778

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale im-
age recognition. In: International Conference on Learning Representations. (2015)

32. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks (2016)

33. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. Commun. ACM 60 (2017) 84–90

34. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size (2016)

BdSL36 17

35. Zeiler, M., Fergus, R.: Visualizing and understanding convolutional neural net-
works. Volume 8689. (2013)

36. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: CVPR09. (2009)

37. Girshick, R.: Fast r-cnn. In: International Conference on Computer Vision (ICCV).
(2015) 1440–1448

38. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. Lecture Notes in Computer Science (2016) 21–37

